Skip to main content
Log in

Nano-vibration measurements using the photoelectromotive force effect in the GaAs crystal

  • Laboratory Techniques
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

A broadband, nano-vibration measuring method based on the photoelectromotive force (photo-EMF) effect of semiconductor crystal is presented. A He-Ne-laser homodyne interferometer system is used as a light source and a GaAs crystal is used as a photodetector. The signal beam, which is modulated by the vibration, interferes with the reference beam, and a vibrating interference pattern is created on the surface of the GaAs crystal. Due to the photo-EMF effect, an alternating current signal, which relates to the vibration, is produced. We found the optimum parameters for the measurements by adjustments of the intensity ratio of the two beams, the angle between the beams and the interelectrode spacing on the GaAs crystal. The system can detect the vibration amplitude about several nanometers. The results of measurements of the vibrations of the PZT sample are well coincided with those obtained by TEMPO200 (Bossa Nova Technologies, America) system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kenderian, S., Djordjevic, B.B., and Green, R.E., Res. Nondestr. Eval., 2001, vol. 13, no. 4, p. 189. doi 10.1007/s00164-001-0019-5

    Article  Google Scholar 

  2. Zhu, L., Wu, S., and Yang, L., Instrum. Exp. Tech., 2014, vol. 57, no. 4, p. 493. doi 10.1134/S0020441214040113

    Article  Google Scholar 

  3. Tolipov, Kh.B., Instrum. Exp. Tech., 2015, vol. 58, no. 1, p. 167. doi 10.1134/S0020441215010108

    Article  Google Scholar 

  4. Erdahl, D.S. and Ume, I.C., IEEE Trans. Adv. Pack., 2004, vol. 27, no. 4, p. 647. doi 10.1109/TADVP.2004.831823

    Article  Google Scholar 

  5. Levin, G.G., Vishnyakov, G.N., and Minaev, V.L., Instrum. Exp. Tech., 2013, vol. 56, no. 6, p. 686. doi 10.1134/S0020441214010060

    Article  Google Scholar 

  6. Yang, L.X., Schuth, M., Thomas, D., Wang, Y.H., and Voesing, F., Opt. Laser. Eng., 2009, vol. 47, no. 2, p. 252. doi 10.1016/j.optlaseng.2008.04.025

    Article  Google Scholar 

  7. McKie, A.D.W. and Addison, Jr., R.C., in Nondestructive Characterization of Materials VIII, Green, R.E., Ed., Springer–Verlag, 1998, p. 111. doi 10.1007/978-1-4615-4847-8_18

  8. Wang, X., Sasaki, O., Suzuki, T., and Maruyama, T., Appl. Opt., 2000, vol. 39, no. 25, p. 4593. doi 10.1364/AO.39.004593

    Article  ADS  Google Scholar 

  9. Iida, Y., Ashihara, S., Ono, H., Shimura, T., Kuroda, K., Kamshilin, A.A., and Matoba, O., J. Optics A: Pure and Appl. Optics, 2003, vol. 5, no. 6, p. 457. doi 10.1088/1464-4258/5/6/010

    Article  ADS  Google Scholar 

  10. Stepanov, S.I., Appl. Opt., 1994, vol. 33, no. 6, p. 915. doi 10.1364/AO.33.000915

    Article  ADS  Google Scholar 

  11. Petrov, M.P., Stepanov, S.I., and Trofimov, G.S., Sov. Tech. Phys. Lett., 1986, vol. 12, no. 8, p. 379. doi 10.1364/AO.33.000915

    Google Scholar 

  12. Kleinert, P., J. Appl. Phys., 2005, vol. 97, no. 7, p. 0737111. doi 10.1063/1.1884250

    Article  Google Scholar 

  13. Bryushinin, M.A. and Sokolov, I.A., Phys. Rev. B: Condens. Matter Mater. Phys., 2000, vol. 62, no. 11, p. 7186. doi 10.1103/PhysRevB.62.7186

    Article  ADS  Google Scholar 

  14. Dunning, G.J., Pepper, D.M., Chiao, M.P., Mitchell, P.V., and O’Meara, T.R., in Nondestructive Characterization of Materials VIII, Green, R.E., Ed., Springer, 1998, p. 21. doi 10.1007/978-1-4615-4847-8_4

  15. Klein, M.B. and Bacher, G.D., in Proc. SPIE3411, Third Int. Conf. Vibr. Measur. Laser Tech.: Adv. Appl., Ancona, Italy, 1998, The Int. Soc. Opt. Eng., p. 53.

    Google Scholar 

  16. Korneev, N.A. and Stepanov, S.I., J. Appl. Phys., 1993, vol. 74, no. 4, p. 2736. doi 10.1063/1.354669

    Article  ADS  Google Scholar 

  17. Rodriguez, P., Trivedi, S., Jin, F., Wang, Ch.-Ch., Stepanov, S., Elliott, G., Meyers, J.F., Lee, J., and Khurgin, J., Appl. Phys. Lett., 2003, vol. 83, no. 9, p. 1893.

    Article  ADS  Google Scholar 

  18. Davidson, F.M., Wang, C.C., Field, C.T., and Trivedi, S., Opt. Lett., 1994, vol. 19, no. 7, p. 478. doi 10.1364/OL.19.000478

    Article  ADS  Google Scholar 

  19. Wang, C.C., Davidson, F., and Trivedi, S., J. Opt. Soc. Am., B, 1997, vol. 14, no. 1, p. 21. doi 10.1364/JOSAB. 14.000021

    Article  ADS  Google Scholar 

  20. Korneev, N., Mansurova, S., Rodriguez, P., and Stepanov, S., J. Opt. Soc. Am., B, 1997, vol. 14, no. 2, p. 396. doi 10.1364/JOSAB.14.00039

    Article  ADS  Google Scholar 

  21. Nalwa, H.S., Handbook of Advanced Electronic and Photonic Materials and Devices, San Diego: Academic, 2000, Vol. 2. doi 10.1016/B978-012513745-4/50026-3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhang.

Additional information

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Zhang, B., Feng, Q. et al. Nano-vibration measurements using the photoelectromotive force effect in the GaAs crystal. Instrum Exp Tech 59, 470–475 (2016). https://doi.org/10.1134/S0020441216030155

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441216030155

Navigation