Skip to main content
Log in

Preparation of Molybdenum–Tungsten Alloy Powders via Magnesium and Calcium Vapor Reduction of Oxide Compounds

  • Published:
Inorganic Materials Aims and scope

Abstract—

We report the preparation of molybdenum–tungsten alloy powders via magnesium and calcium vapor reduction of the Mo0.3W0.7O3, MgМо0.7W0.3O4, and CaМо0.7W0.3O4 compounds in the temperature range 750–880°C at residual pressures in the reactor from 5 to 15 kPa. The specific surface area of the Mo–W alloy powders prepared by reducing Mo0.3W0.7O3 slightly exceeds that of the mixture of metal powders obtained by reducing a mixture of WO3 and MoO3 under similar conditions. The specific surface area of the Mo–W alloy powders prepared via magnesium vapor reduction of the CaМо0.7W0.3O4 and MgМо0.7W0.3O4 compounds exceeds that in the case of calcium vapor reduction. We have obtained molybdenum–tungsten alloy powders having lattice parameters of 0.3153 ± 0.0001 and 0.3160 ± 0.0001 nm and ranging in specific surface area from 9 to 22 m2/g. The average crystallite size of the alloys, evaluated using the Scherrer formula, lies in the range 12–35 nm. The powders have a mesoporous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Lassner, E. and Schubert, W.-D., Tungsten: Properties, chemistry, Technology of the Element, Alloys, and Chemical Compounds, New York: Kluwer, 1999.

    Book  Google Scholar 

  2. Shields, J.A., Applications of Molybdenum Metal and Its Alloys, London: IMOA, 2013.

    Google Scholar 

  3. Naidu, S.V.N., Sriramamurthy, A.M., and Rao, P.R., The Mo–W (molybdenum-tungsten) system, Bull. Alloy Phase Diagrams, 1984, vol. 5, no. 2, pp. 177–180. https://doi.org/10.1007/bf02868956

    Article  Google Scholar 

  4. Sahoo, P.K., Srivastava, S.K., Kamal, S.S.K., and Durai, L., Consolidation behavior of W–20–40 wt.% Mo nanoalloys synthesized by thermal decomposition method, Int. J. Refract. Met. Hard Mater., 2015, vol. 51, pp. 124–129. https://doi.org/10.1016/j.ijrmhm.2015.03.008

    Article  CAS  Google Scholar 

  5. Zhang, H. and Zhang, G.-H., Preparation of ultrafine tungsten–molybdenum composite powder and its sintering behavior, Met. Mater. Int., 2021, vol. 27, pp. 1649–1661. https://doi.org/10.1007/s12540-019-00581-z

    Article  CAS  Google Scholar 

  6. Chakraborty, S., Banerjee, S., Sanyal, G., et al., Studies on the synthesis of Mo–30 wt% W alloy by non-conventional approaches, J. Alloys Compd., 2010, vol. 501, no. 2, pp. 211–217. https://doi.org/10.1016/j.jallcom.2010.04.114

    Article  CAS  Google Scholar 

  7. Srivastav, A.K., Chawake, N., Yadav, D., et al., Localized pore evolution assisted densification during spark plasma sintering of nanocrystalline W–5 wt.% Mo alloy, Scr. Mater., 2019, vol. 159, pp. 41–45. https://doi.org/10.1016/j.scriptamat.2018.09.013

    Article  CAS  Google Scholar 

  8. Liu, H.-X., Yang, Y.-F., Cai, Y.-F., et al., Prediction of sintered density of binary W(Mo) alloys using machine learning, Rare Met., 2023, vol. 42, pp. 2713–2724. https://doi.org/10.1007/s12598-022-02238-0

    Article  CAS  Google Scholar 

  9. Hu, P., Chen, T., Li, X., et al., Ultrafast synthesis of nanocrystalline molybdenum powder by thermal plasma and its sintering behavior, Int. J. Refract. Met. Hard Mater., 2019, vol. 83, p. 104969. https://doi.org/10.1016/j.ijrmhm.2019.104969

    Article  CAS  Google Scholar 

  10. Gonzalez, G., Sagarzazu, A., Villalba, R., and Ochoa, J., Comparative study of NiW, NiMo and MoW prepared by mechanical alloying, J. Alloys Compd., 2007, vols. 434–435, pp. 525–529. https://doi.org/10.1016/j.jallcom.2006.08.155

    Article  CAS  Google Scholar 

  11. Srivastav, A.K. and Murty, B.S., Dilatometric analysis on shrinkage behavior during non-isothermal sintering of nanocrystalline tungsten mechanically alloyed with molybdenum, J. Alloys Compd., 2012, vol. 536, nos. 1–2, pp. 41–44. https://doi.org/10.1016/j.jallcom.2011.12.067

    Article  CAS  Google Scholar 

  12. Ohser-Wiedemann, R., Martin, U., Müller, A., and Schreiber, G., Spark plasma sintering of Mo–W powders prepared by mechanical alloying, J. Alloys Compd., 2013, vol. 560, pp. 27–32. https://doi.org/10.1016/j.jallcom.2013.01.142

    Article  CAS  Google Scholar 

  13. Paul, B., Jain, D., Chakraborty, S.P., et al., Sintering kinetics study of mechanically alloyed nanocrystalline Mo–30 wt.% W, Thermochim. Acta, 2011, vol. 512, nos. 1–2, pp. 134–141. https://doi.org/10.1016/j.tca.2010.09.015

    Article  CAS  Google Scholar 

  14. Chen, Q., Liang, S., Zhang, J., et al., Preparation and characterization of WMo solid solution nanopowders with a wide composition range, J. Alloys Compd., 2020, vol. 823, p. 153760. https://doi.org/10.1016/j.jallcom.2020.153760

    Article  CAS  Google Scholar 

  15. Chen, Q., Liang, S., Li, B., et al., Sol–gel synthesis and characterization of tungsten–molybdenum solid solution nanoparticles, Int. J. Refract. Met. Hard Mater., 2021, vol. 100, p. 105668. https://doi.org/10.1016/j.ijrmhm.2021.105668

    Article  CAS  Google Scholar 

  16. Miroshnichenko, M.N., Kolosov, V.N., Makarova, T.I., and Orlov, V.M., Synthesis of calcium and magnesium molybdates and tungstates, Izv. SPbGTI (TU), 2017, no. 38 (64), pp. 44–47. https://doi.org/10.15217/issn1998984-9.2017.38

  17. Orlov, V.M. and Kolosov, V.N., Magnesiothermic reduction of tungsten and molybdenum oxide compounds, Dokl. Chem., 2016, vol. 468, no. 1, pp. 162–166. https://doi.org/10.1134/S0012500816050062

    Article  CAS  Google Scholar 

  18. Kolosov, V.N., Orlov, V.M., and Miroshnichenko, M.N., Calcium vapor reduction of group V and VI metal oxide compounds, Inorg. Mater., 2020, vol. 56, no. 1, pp. 35–41. https://doi.org/10.1134/S0020168520010069

    Article  CAS  Google Scholar 

  19. Cullity, B.D. and Stock, S.R., Elements of X-Ray Diffraction, Englewood Cliffs: Prentice-Hall, 2001, 3rd ed.

    Google Scholar 

  20. Kolosov, V.N. and Orlov, V.M., Electronically mediated reactions in metal thermal reduction of molybdenum and tungsten oxide compounds, Dokl. Phys. Chem., 2019, vol. 484, no. 2, pp. 28–31. https://doi.org/10.1134/S0012501619020027

    Article  CAS  Google Scholar 

  21. Van Arkel, A.E., A simple method for increase of accuracy in Debye Scherrer technique, Z. Kristallogr., 1928, vol. 67, pp. 235–238.

    CAS  Google Scholar 

  22. Taylor, A. and Doyle, N.J., The constitution diagram of the tungsten–molybdenum–osmium system, J. Less-Common Met., 1965, vol. 9, nos. 1–2, pp. 190–205. 10.1016.0022-5088(65)90096-2

  23. Tran, C.C., Han, Y., Garcia-Perez, M., and Kaliaguine, S., Synergistic effect of Mo–W carbides on selective hydrodeoxygenation of guaiacol to oxygen-free aromatic hydrocarbons, Catal. Sci. Technol., 2019, vol. 9, pp. 1387–1397. https://doi.org/10.1039/c8cy02184h

    Article  CAS  Google Scholar 

  24. Tran, C.C., Mohan, O., Banerjee, A., et al., A combined experimental and DFT investigation of selective hydrodeoxygenation of guaiacol over bimetallic carbide, Energy Fuels, 2020, vol. 34, pp. 16265–16273. https://doi.org/10.1021/acs.energyfuels.0c03102

    Article  CAS  Google Scholar 

  25. Mehdad, A., Jentoft, R.E., and Jentof, F.C., Single-phase mixed molybdenum–tungsten carbides: synthesis, characterization and catalytic activity for toluene conversion, Catal. Today, 2019, vol. 323, no. 2, pp. 112–122. https://doi.org/10.1016/j.cattod.2018.06.037

    Article  CAS  Google Scholar 

  26. Li, S., Zhang, Y., Han, F., et al., Bimetallic molybdenum–tungsten carbide/reduced graphene oxide hybrid promoted Pt catalyst with enhanced electrocatalytic activity and stability for direct methanol fuel cells, Appl. Surf. Sci., 2022, vol. 600, p. 154134. https://doi.org/10.1016/j.apsusc.2022.154134

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Kolosov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolosov, V.N., Miroshnichenko, M.N. & Prokhorova, T.Y. Preparation of Molybdenum–Tungsten Alloy Powders via Magnesium and Calcium Vapor Reduction of Oxide Compounds. Inorg Mater 59, 940–948 (2023). https://doi.org/10.1134/S0020168523090078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523090078

Keywords:

Navigation