Skip to main content
Log in

Structural Transformations of Ceramics Forming during High-Temperature Nitridation of Zr–Nb Alloys

  • Published:
Inorganic Materials Aims and scope

Abstract—

We describe a sequence of structural transformations characterizing high-temperature nitridation of zirconium–niobium alloys containing 0.1–10 wt % niobium. High-temperature saturation of solid solutions of niobium in zirconium with nitrogen is accompanied by decomposition of the Zr〈Nb〉 solid solution and the formation of Zr1 – хNbхN–(ZrN1 – n/β-solid solution of Zr in Nb)–Zr1 – хNbхN composite structures. During nitridation of the heterostructures, zirconium nitride reacts with β-niobium, which is the final step of the nitridation of the parent Zr〈Nb〉 solid solution. Characteristically, the ceramics thus prepared have near-surface porosity reproducing the surface porosity of the as-rolled material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Arai, Y. and Nakajima, K., Preparation and characterization of PuN pellets containing ZrN and TiN, J. Nucl. Mater., 2000, vol. 281, nos. 2–3, pp. 244–247.https://doi.org/10.1016/S0022-3115(00)00393-7

    Article  CAS  Google Scholar 

  2. Streit, M., Ingold, F., Pouchon, M., Gauckler, L.J., and Ottaviani, J.P., Zirconium nitride as inert matrix for fast systems, J. Nucl. Mater., 2003, vol. 319, pp. 51–58.https://doi.org/10.1016/S0022-3115(03)00133-8

    Article  CAS  Google Scholar 

  3. Wheeler, K., Peralta, P., Parra, M., McClellan, K., Dunwoody, J., and Egeland, G., Effect of sintering conditions on the microstructure and mechanical properties of ZrN as a surrogate for actinide nitride fuels, J. Nucl. Mater., 2007, vol. 366, no. 3, pp. 306–316.https://doi.org/10.1016/j.jnucmat.2007.03.023

    Article  CAS  Google Scholar 

  4. Demenyuk, V.D., Yurlova, M.S., Lebedeva, L.Yu., Grigor’ev, E.G., and Olevskii, E.A., Electric discharge consolidation methods: an alternative to spark plasma sintering (literature survey), Yad. Fiz. Inzh., 2013, vol. 4, no. 3, pp. 195–239.https://doi.org/10.1134/S2079562913030019

    Article  Google Scholar 

  5. Hollmer, T., Manufacturing methods for (U–Zr)N-fuels, Student Thesis, Stockholm: AlbaNova Univ. Centre, 2011, p. 80.

  6. Bashlykov, S.S., Demenyuk, V.D., Grigor’ev, E.G., Olevskii, E.A., and Yurlova, M.S., Electric discharge compaction of uranium mononitride powder, Fiz. Khim. Obrab. Mater., 2013, no. 5, pp. 77–83.

  7. Graziani, T. and Bellosi, A., Densification and characteristics of tin ceramics, J. Mater. Sci. Lett., 1995, vol. 14, no. 15, pp. 1078–1081.https://doi.org/10.1007/BF00258170

    Article  CAS  Google Scholar 

  8. Song, J., Jiang, L., Liang, G., Gao, J., An, J., Cao, L., Xie, J., Wang, S., and Lv, M., Strengthening and toughening of TiN-based and TiB2-based ceramic tool materials with HfC additive, Ceram. Int., 2017, vol. 43, no. 11, pp. 8202–8207.https://doi.org/10.1016/j.ceramint.2017.03.147

    Article  CAS  Google Scholar 

  9. Kovalev, I.A., Shokodko, A.V., Shevtsov, S.V., Ogarkov, A.I., Ashmarin, A.A., Tenishev, A.V., Kolomiets, T.Yu., Shokodko, E.A., Chesnokov, A.A., Shornikov, D.P., Kochanov, G.P., Chernyavskii, A.S., and Solntsev, K.A., Development of a fuel element on the basis of the composition (Zr,U)N for a high-temperature reactor, J. Phys.: Conf. Ser., 2018, vol. 1134, no. 1, paper 012075.https://doi.org/10.1088/1742-6596/1134/1/012075

  10. Solntsev, K.A., Shustorovich, E.M., and Buslaev, Y.A., Oxidative constructing of thin-walled ceramics (OCTWC), Dokl. Chem., 2001, vol. 378, nos. 4–6, pp. 143–149.

    Article  Google Scholar 

  11. Solntsev, K.A., Shustorovich, E.M., Chernyavskii, A.S., and Dudenkov, I.V., Oxidative constructing of thin-walled ceramics (OCTC) at temperatures above the melting point of a metal: fabrication of oxide fibers from filaments of aluminum and its alloy, Dokl. Chem., 2002, vol. 385, nos. 1–3. pp. 193–198.

    Article  CAS  Google Scholar 

  12. Kononov, A.G., Kukareko, V.A., Belyi, A.V., and Sharkeev, Yu.P., Ion-modified submicrocrystalline titanium and zirconium alloys for medical and engineering applications, Mekh. Mashin, Mekh. Mater., 2013, vol. 1, no. 22, pp. 47–53.

    Google Scholar 

  13. Zhaoa, Y., Lib, H., and Huanga, Yu., The structure, mechanical, electronic and thermodynamic properties of bcc Zr–Nb alloy: a first principles study, J. Alloys Compd., 2021, vol. 862, paper 158029.

  14. Daniel, Ch.S., Honniball, P.D., Bradley, L., Preuss, M., and Fonseca, J.Q., Texture development during rolling of α + β dual-phase ZrNb alloys, Zirconium in the Nuclear Industry: 18th Int. Symp. STP 1597, 2018.https://doi.org/10.1520/STP159720160070

  15. Sokolenko, V.I., Mats, A.V., and Mats, V.A., Mechanical characteristics of nanostructured zirconium and zirconium–niobium alloys, Fiz. Tekh. Vys. Davlenii, 2013, vol. 23, no. 2, pp. 96–102.

    CAS  Google Scholar 

  16. Belyi, A.V., Kononov, A.G., and Kukareko, V.A., Effect of ion-beam nitridation on structural and phase states and frictional characteristics of surface layers of Zr–2.5% Nb alloy, Tr. BGTU, 2016, no. 2, pp. 87–99.

  17. Tikhonchev, M.Yu. and Svetukhin, V.V., Molecular dynamics evaluation of threshold energies for atomic displacements near an extended HCP Zr/BCC Nb interface, Izv. Samarsk. Nauchn. Tsentra Ross. Akad. Nauk. 2012, vol. 14, no. 4 (4), pp. 1143–1148.

  18. Neklyudov, I.M., Azhazha, V.M., Voevodin, V.N., Borodin, O.V., Petel’guzov, I.A., Vasilenko, R.L., Rybal’chenko, N.D., and Roenko, N.M., Investigation of the microstructure of fuel rod pipes from Zr1Nb (KTTs-110) calciothermic alloy, Vopr. At. Nauki Tekh., 2002, no. 6 (82), pp. 106–111.

  19. Liu, Y.Y., Yang, Y., Dong, D., Wang, J., and Zhou, L., Improving wear resistance of Zr–2.5Nb alloy by formation of microtextured nitride layer produced via laser surface texturing/plasma nitriding technology, Surf. Interfaces, 2020, vol. 20, pp. 100638–100644.

    Article  CAS  Google Scholar 

  20. Ushakov, S.V., Navrotsky, A., Hong Qi-Jun, and van de Walle, A., Carbides and nitrides of zirconium and hafnium, Materials, 2019, vol. 12, no. 17, paper 2728.https://doi.org/10.3390/ma12172728

  21. Powder Diffraction File, Alphabetical Index, Inorganic Compounds, Newtown Square: Joint Committee on Powder Diffraction Standards, 1997.

  22. Kondo, R., Nomura, N., Suyalatu, Tsutsumi, Yu., Doi, H., and Hanawa, T., Microstructure and mechanical properties of as-cast Zr–Nb alloys, Acta Biomater., 2011, vol. 7, pp. 4278–4284.

    Article  CAS  Google Scholar 

  23. Abriata, J.P. and Bolcich, J.C., The Nb–Zr (niobium–zirconium) system, J. Phase Equilib., 1982, no. 3(1), pp. 34–44.

  24. Collins, T.J., Images for microscopy, BioTechniques, 2007, vol. 43, pp. 25–30.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 20-13-00392 (federal state budget funded science institution Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Kovalev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalev, I.A., Shevtsov, S.V., Kochanov, G.P. et al. Structural Transformations of Ceramics Forming during High-Temperature Nitridation of Zr–Nb Alloys. Inorg Mater 58, 531–537 (2022). https://doi.org/10.1134/S0020168522050065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522050065

Keywords:

Navigation