Skip to main content
Log in

Deformation Features of the Propagation of Cleavage Cracks in a Ferritic-Pearlite Microstructure in the Ductile to Brittle Transition Interval

  • Published:
Inorganic Materials Aims and scope

Abstract

In the paper, the deformation features of the propagation of cleavage cracks in low-alloy low-carbon steel with a ferritic-pearlite microstructure by example of steel 09G2S after hot rolling are investigated. The studied cleavage cracks were obtained in impact bending tests at temperatures in the ductile to brittle transition interval. The study was carried out by transmission electron microscopy, transmission Kikuchi diffraction, and electron backscattered diffraction. It is shown that the deformation accompanying the growth of the cleavage crack in the ferritic-pearlite microstructure is formed when the joints between the cracks propagating in parallel planes break. The crack growth within a single plane occurs without any recorded deformation. The joints are broken by a ductile mechanism according to the scheme of mixed loading by opening and shear. Overlapping of the cleavage cracks determines the relationship between the shear mode and the opening mode during joint deformation, which controls the shape and depth of the plastic deformation zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Cottrell, A.H., Theory of brittle fracture in steel and similar metals, Trans. Metall. Soc. AIME, 1958, vol. 212, pp. 192–203.

    CAS  Google Scholar 

  2. Friedel, J., Dislocations, Oxford: Pergamon, 1964.

    Google Scholar 

  3. Rice, J.R. and Thomson, R., Ductile versus brittle behaviour of crystals, Philos. Mag., 1974, vol. 29, no. 1, pp. 73–97.https://doi.org/10.1080/14786437408213555

    Article  CAS  Google Scholar 

  4. Rice, J.R., Beltz, G.E., and Sun, Y., Peierls framework for dislocation nucleation from a crack tip, in Topics in Fracture and Fatigue, New York: Springer, 1992, pp. 1–58.https://doi.org/10.1007/978-1-4612-2934-6_1

  5. Shtremel’, M.A., Belyakov, B.G., and Belomyttsev, M.Yu., Dissipative structure of fracture, Dokl. Akad. Nauk SSSR, 1991, vol. 318, no. 1, pp. 105–111.

    Google Scholar 

  6. Qiao, Y. and Argon, A.S., Cleavage crack-growth-resistance of grain boundaries in polycrystalline Fe–2% Si alloy: experiments and modeling, Mech. Mater., 2003, vol. 35, nos. 1–2, pp. 129–154.https://doi.org/10.1016/S0167-6636(02)00194-1

  7. Belomyttsev, M.Yu., Belyakov, B.G., and Shtremel’, M.A., Effect of temperature on molybdenum fracture processes, Izv. Akad. Nauk, Met., 1992, no. 2, pp. 200–206.

  8. Belomyttsev, M.Yu., Structures and cleavage mechanisms observed in the BCC single crystals by the TEM method, Phys. Met. Metallogr., 2005, vol. 100, no. 5, pp. 500–508.

    Google Scholar 

  9. Nohava, J., Haušild, P., Karlık, M., and Bompard, P., Electron backscattering diffraction analysis of secondary cleavage cracks in a reactor pressure vessel steel, Mater. Character., 2002, vol. 49, no. 3, pp. 211–217.https://doi.org/10.1016/S1044-5803(02)00360-1

    Article  CAS  Google Scholar 

  10. Naylor, J.P. and Krahe, P.R., Cleavage planes in lath type bainite and martensite, Metall. Trans. A, 1975, vol. 6, no. 3, pp. 594–599.

    Article  Google Scholar 

  11. Mohseni, P., Solberg, J.K., Karlsen, M., Akselsen, O.M., and Ostby, E., Application of combined EBSD and 3D-SEM technique on crystallographic facet analysis of steel at low temperature, J. Microsc., 2013, vol. 251, no. 1, pp. 45–56.https://doi.org/10.1111/jmi.12041

    Article  CAS  PubMed  Google Scholar 

  12. Pineau, A., Benzerga, A.A., and Pardoen, T., Failure of metals I: Brittle and ductile fracture, Acta Mater., 2016, vol. 107, pp. 424–483.https://doi.org/10.1016/j.actamat.2015.12.034

    Article  CAS  Google Scholar 

  13. Kong, X. and Qiao, Y., Crack trapping effect of persistent grain boundary islands, Fatigue Fract. Eng. Mater. Struct., 2005, vol. 28, no. 9, pp. 753–758.https://doi.org/10.1111/j.1460-2695.2005.00908.x

    Article  CAS  Google Scholar 

  14. Qiao, Y. and Argon, A.S., Cleavage cracking resistance of high angle grain boundaries in Fe–3% Si alloy, Mech. Mater., 2003, vol. 35, nos. 3–6, pp. 313–331.https://doi.org/10.1016/S0167-6636(02)00284-3

  15. Klevtsov, G.V., Plasticheskie zony i diagnostika razrusheniya metallicheskikh materialov (Plastic Zones and Fracture Diagnosis of Metallic Materials), Moscow: Mosk. Inst. Stali i Splavov, 1999.

  16. Alexander, D.J. and Bernstein, I.M., The cleavage plane of pearlite, Metall. Trans. A, 1982, vol. 13, no. 10, pp. 1865–1868.

    Article  CAS  Google Scholar 

  17. Imamura, S., Muramoto, H., Murata, Y., Shimada, Y., Kayamori, Y., and Tagawa, T., Crystallographic orientation analysis of cleavage facets adjacent to a fracture trigger in low carbon steel, Int. J. Fract., 2015, vol. 192, no. 2, pp. 253–257.https://doi.org/10.1007/s10704-015-0014-5

    Article  CAS  Google Scholar 

  18. Karlík, M., Haušild, P., Prioul, C., and Stöger-Pollach, M., Microstructure of low alloyed steel close to the fracture surface, Mater. Sci. Eng., A, 2007, vol. 462, nos. 1–2, pp. 183–188.https://doi.org/10.1016/j.msea.2006.04.149

  19. Trimby, P.W., Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope, Ultramicroscopy, 2012, vol. 120, pp. 16–24.https://doi.org/10.1016/j.ultramic.2012.06.004

    Article  CAS  PubMed  Google Scholar 

  20. Liang, X.Z., Dodge, M.F., Jiang, J., and Dong, H.B., Using transmission Kikuchi diffraction in a scanning electron microscope to quantify geometrically necessary dislocation density at the nanoscale, Ultramicroscopy, 2019, vol. 197, pp. 39–45.https://doi.org/10.1016/j.ultramic.2018.11.011

    Article  CAS  PubMed  Google Scholar 

  21. Kantor, M.M., Sudin, V.V., and Solntsev, K.A., Effect of the type and morphology of grain boundaries on stress corrosion cracking in low-alloy, low-carbon steel, Inorg. Mater., 2019, vol. 55, no. 4, pp. 409–416.https://doi.org/10.1134/S0020168519040083

    Article  CAS  Google Scholar 

  22. Brewer, L.N., Field, D.P., and Merriman, C.C., Mapping and assessing plastic deformation using EBSD, in Electron Backscatter Diffraction in Materials Science, Boston: Springer, 2009, pp. 251–262.https://doi.org/10.1007/978-0-387-88136-2_18

  23. Wang, Y., Wang, W., Zhang, B., and Li, C.Q., A review on mixed mode fracture of metals, Eng. Fract. Mech., 2020, paper 107126.https://doi.org/10.1016/j.engfracmech.2020.107126

  24. Zhang, X.P., Dorn, L., and Shi, Y.W., Correlation of the microshear toughness and fracture toughness for pressure vessel steels and structural steels, Int. J. Pressure Vessels Piping, 2002, vol. 79, no. 6, pp. 445–450.https://doi.org/10.1016/S0308-0161(02)00032-7

    Article  CAS  Google Scholar 

  25. Novak, J., Ductile fracture of ferritic steels: correlation of K IIc/K Ic ratio and strain hardening curve, ASME Pressure Vessels and Piping Conf., 2002, vol. 46547, pp. 131–135.https://doi.org/10.1115/PVP2002-1342

Download references

ACKNOWLEDGMENTS

We express our gratitude to M.A. Shtremel’, Professor of National Research Technological University Moscow Institute of Steel and Alloys (MISiS), Doctor of Physical and Mathematical Sciences, for a detailed discussion of the experimental results.

Funding

The work was carried out within the state task no. 075-00947-20-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Kantor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kantor, M.M., Sudin, V.V. & Solncev, K.A. Deformation Features of the Propagation of Cleavage Cracks in a Ferritic-Pearlite Microstructure in the Ductile to Brittle Transition Interval. Inorg Mater 57, 641–653 (2021). https://doi.org/10.1134/S0020168521060042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521060042

Keywords:

Navigation