Skip to main content
Log in

Structure Formation during High-Temperature Synthesis in an Activated Ti + Al Powder Mixture

  • Published:
Inorganic Materials Aims and scope

Abstract

This paper presents a detailed experimental study of phase formation processes in a mechanically activated Ti + Al powder mixture. High-temperature synthesis has been performed in thermal explosion mode using induction heating of the mixture. We present the first evidence that, during a continuous transition from rapid heating to high-temperature annealing, the composition of the synthesis products depends on the secondary structuring time. Early stages of annealing involve structural relaxation processes, which make the phase composition more uniform and lead to the formation of an essentially single-phase TiAl compound. In later stages, the system undergoes a transition to thermodynamic equilibrium, which is accompanied by the formation of compounds that are in equilibrium at the annealing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Khina, B.B. and Formanek, B., On the physicochemical mechanism of the influence of preliminary mechanical activation on self-propagating high-temperature synthesis, Solid State Phenom., 2008, vol. 138, pp. 159–164.

    Article  CAS  Google Scholar 

  2. Aruna, S.T. and Mukasyan, A.S., Combustion synthesis and nanomaterials, Curr. Opin. Solid State Mater. Sci., 2008, vol. 12, pp. 44–50.

    Article  CAS  Google Scholar 

  3. Mukasyan, A.S., Khina, B.B., Reeves, R.V., and Son, S.F., Mechanical activation and gasless explosion: nanostructural aspects, Chem. Eng. J., 2011, vol. 174, pp. 677–686.

    Article  CAS  Google Scholar 

  4. Filimonov, V.Yu., High-temperature synthesis in nanostructured heterogeneous systems, Curr. Opin. Chem. Eng., 2011, vol. 3, pp. 18–24.

    Article  Google Scholar 

  5. White J.D., Reeves, R.V., Son, S.F., and Mukasyan, A.S., Thermal explosion in Al–Ni system: influence of mechanical activation, J. Phys. Chem. A, 2009, vol. 113, pp. 13 541–13 547.

  6. Mukasyan, A.S., White, J.D., Kovalev, D.Yu., Kochetov, N.A., Ponomarev, V.I., and Son, S.F., Dynamics of phase transformation during thermal explosion in the Al–Ni system: influence of mechanical activation, Phys. B (Amsterdam, Neth.), 2010, vol. 405, pp. 778–784.

    Google Scholar 

  7. Shteinberg, A.S., Ya-Cheng Lin, Son, S.F., and Mukasyan, A.S., Kinetics of high temperature reaction in Ni–Al system: influence of mechanical activation, J. Phys. Chem. A, 2010, vol. 114, pp. 6111–6116.

    Article  CAS  Google Scholar 

  8. Filimonov, V.Yu., Korchagin, M.A., Dietenberg, I.A., Tyumentsev, A.N., and Lyakhov, N.Z., High temperature synthesis of single-phase Ti3Al intermetallic compound in mechanically activated powder mixture, Powder Technol., 2013, vol. 235, pp. 606–613.

    Article  CAS  Google Scholar 

  9. Korchagin, M.A. and Dudina, D.V., Application of self-propagating high-temperature synthesis and mechanical activation for obtaining nanocomposites, Combust. Explos. Shock Waves, 2007, vol. 43, pp. 176–187.

    Article  Google Scholar 

  10. Korchagin, M.A., Grigorieva, T.F., and Bokhonov, B.B., Solid-state combustion in mechanically activated SHS systems. I. Effect of activation time on process parameters and combustion product, Combust. Explos. Shock Waves, 2003, vol. 39, pp. 43–50.

    Article  Google Scholar 

  11. Korchagin, M.A., Grigorieva, T.F., and Bokhonov, B.B., Solid-state combustion in mechanically activated SHS systems: II. Effect of mechanical activation conditions on process parameters and combustion product composition, Combust. Explos. Shock Waves, 2003, vol. 39, pp. 51–58.

    Article  CAS  Google Scholar 

  12. Filimonov, V.Yu., Korchagin, M.A., Smirnov, E.V., Sytnikov, A.A., Yakovlev, V.I., and Lyakhov, N.Z., Kinetics of mechanically activated high temperature synthesis of Ni3Al in the thermal explosion mode, Intermetallics, 2011, vol. 19, pp. 833–840.

    Article  CAS  Google Scholar 

  13. Charlot, F., Bernard, F., Gaffet, E., Klein, D., and Niepce, J.C., In situ time-resolved diffraction coupled with a thermal I.R. camera to study mechanically activated SHS reaction: case of Fe–Al binary system, Acta Mater., 1999, vol. 47, pp. 616–629.

    Article  Google Scholar 

  14. Gras, C., Gaffet, E., and Bernard, F., Combustion wave structure during the MoSi2 synthesis by mechanically-activated self-propagating high-temperature synthesis (MASHS): in situ time-resolved investigations, Intermetallics, 2006, vol. 14, pp. 521–529.

    Article  CAS  Google Scholar 

  15. Gauthier, V., Bernard, F., Gaffet, E., Josse, C., and Larpin, J.P., In-situ time resolved X-ray diffraction study of the formation of the nanocrystalline NbAl3 phase by mechanically activated self-propagating high-temperature synthesis reaction, Mater. Sci. Eng., A, 1999, vol. 272, pp. 334–341.

    Article  Google Scholar 

  16. Turrillas, C.C.X., Vaughan, G.B.M., Terry, A.E., Kvick, A., and Rodriguez, M.A., Al–Ni intermetallics obtained by SHS; a time-resolved X-ray diffraction study, Intermetallics, 2007, vol. 15, pp. 1163–1171.

    Article  Google Scholar 

  17. Przeliorz, R., Goral, M., Moskal, G., and Swadzba, L., The relationship between specific heat capacity and oxidation resistance of TiAl alloys, J. Achievements Mater. Manufact. Eng., 2007, vol. 21, pp. 48–50.

    Google Scholar 

  18. Novoselova, T., Celotto, S., Morgan, R., Fox, P., and O’Neill, W., Formation of TiAl intermetallics by heat treatment of cold sprayed precursor deposits, J. Alloys Compd., 2007, vol. 436, pp. 69–77.

    Article  CAS  Google Scholar 

  19. Palm, M., Zhang, L.C., Stein, F., and Sauthoff, G., Phases and phase equilibria in the Al rich part of the Al–Ti system above 900C, Intermetallics, 2002, vol. 10, pp. 523–540.

    Article  CAS  Google Scholar 

  20. Rohatgi, A., Harach, D.J., Vecchio, K.S., and Harvey, K.P., Resistance-curve and fracture behavior of Ti–Al3Ti metallicointermetallic laminate (MIL) composites, Acta Mater., 2003, vol. 51, pp. 2933–2957.

    Article  CAS  Google Scholar 

  21. Filimonov, V.Yu., Sitnikov, A.A., Afanas’ev, A.V., Loginova, M.V., Yakovlev, V.I., Negodyaev, A.Z., Schreifer, D.V., and Solov’ev, V.A., Microwave assisted combustion synthesis in mechanically activated 3Ti + Al powder mixtures: structure formation issues, Int. J. Self-Propag. High-Temp. Synth., 2014, vol. 23, pp. 18–25.

    Article  CAS  Google Scholar 

  22. Yi, H.C., Petric, A., and Moore, J.J., Effect of heating rate on the combustion synthesis of Ti–Al intermetallic compounds, J. Mater. Sci., 1992, vol. 27, pp. 6797–6806.

    Article  CAS  Google Scholar 

  23. Rogachev, A.S., Shkodich, N.F., Vadchenko, S.G., Baras, F., Kovalev, D.Yu., Rouvimov, S., Nepapushev, A.A., and Mukasyan, A.S., Influence of the high energy ball milling on structure and reactivity of the Ni + Al powder mixture, J. Alloys Compd., 2013, vol. 577, pp. 600–605.

    Article  CAS  Google Scholar 

  24. Mukasyan, A.S., Khina, B.B., Reeves, R.V., and Son, S.F., Mechanical activation and gasless explosion: nanostructural aspects, Chem. Eng. J., 2011, vol. 174, pp. 677–686.

    Article  CAS  Google Scholar 

  25. Filimonov, V.Yu., Koshelev, K.B., and Sytnikov, A.A., Thermal modes of heterogeneous exothermic reactions. solid-phase interaction, Combust. Flame, 2017, vol. 185, pp. 93–104.

    Article  CAS  Google Scholar 

  26. Che, H.Q. and Fan, Q.C., Microstructural evolution during the ignition/quenching of Pre-Heated Ti/3Al powders, J. Alloys Compd., 2009, vol. 475, pp. 184–190.

    Article  CAS  Google Scholar 

  27. Wang, T. and Zhang, J., Thermoanalytical and metallographical investigations on the synthesis of TiAl3 from elementary powders, Mater. Chem. Phys., 2006, vol. 99, pp. 20–25.

    Article  CAS  Google Scholar 

  28. Xu, L., Cui, Y.Y., Hao, Y.L., and Yang, R., Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples, Mater. Sci. Eng., A, 2006, vol. 35, pp. 638–647.

    Article  Google Scholar 

  29. Medda, E., Delogu, F., and Cao, G., Combination of mechanochemical activation and self-propagating behaviour for the synthesis of Ti aluminides, Mater. Sci. Eng., A, 2003, vol. 361, pp. 23–28.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education, state research target no. 11.1085.2017/4.6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Filimonov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filimonov, V.Y., Loginova, M.V., Sobachkin, A.V. et al. Structure Formation during High-Temperature Synthesis in an Activated Ti + Al Powder Mixture. Inorg Mater 55, 1097–1103 (2019). https://doi.org/10.1134/S0020168519110049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519110049

Keywords:

Navigation