Skip to main content
Log in

Approaches to the fabrication of calcium phosphate-based porous materials for bone tissue regeneration

  • Published:
Inorganic Materials Aims and scope

Abstract

This paper reviews advances in the fabrication of calcium phosphate materials for injured bone tissue regeneration. We examine the key features of rapid prototyping for the fabrication of porous ceramic scaffolds with tailored architectures, the technology of biopolymer-based composite materials reinforced with calcium phosphate particles, and the fabrication of porous scaffolds via cement route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hench, L.L. and Polak, J.M., Third-generation biomedical materials, Science, 2002, vol. 295, pp. 1014–1017.

    Article  CAS  Google Scholar 

  2. Safronova, T.V. and Putlyaev, V.I., Medical inorganic materials research in Russia: calcium phosphate materials, Nanosist.: Fiz., Khim., Mat., 2013, vol. 4, no. 1, pp. 24–47.

    Google Scholar 

  3. Veresov, A.G., Putlyaev, V.I., and Tret’yakov, Yu.D., Advances in calcium phosphate biomaterials, Ross. Khim. Zh., 2000, vol. 44, no. 6, pp. 32–46.

    CAS  Google Scholar 

  4. Barinov, S.M. and Komlev, V.S., Biokeramika na osnove fosfatov kal’tsiya (Calcium Phosphate-Based Bioceramics), Moscow: Nauka, 2014.

    Google Scholar 

  5. Barinov, S.M., Calcium-phosphate-based ceramic and composite materials for medical applications, Usp. Khim., 2010, vol. 10, no. 1, pp. 15–32.

    Google Scholar 

  6. Barinov, S.M. and Komlev, V.S., Calcium Phosphate Based Bioceramics for Bone Tissue Engineering, Zurich: Trans Tech, 2008.

    Google Scholar 

  7. Petrovskaya, T.S., Shakhov, V.P., Vereshchagin, V.I., and Ignatov, V.P., Biomaterialy i implantaty dlya travmatologii i ortopedii (Biomaterials and Implants for Traumatology and Orthopedics), Tomsk: Tomsk. Gos. Univ., 2011.

    Google Scholar 

  8. Suchanek, W. and Yoshimura, M., Processing and properties of HA-based biomaterials for use as hard tissue replacement implants, J. Mater. Res. Soc., 1998, vol. 13, no. 1, pp. 94–103.

    Article  CAS  Google Scholar 

  9. Lukin, E.S., Gorelik, E.I., Safina, M.N., et al., Bioactive high-porosity hydroxyapatite-based ceramics: applications in bone tissue engineering, Fundam. Osnovy Inzh. Nauk, 2006, vol. 1, pp. 166–171.

    Google Scholar 

  10. Sarkisov, P.D., Stroganova, E.E., Mikhailenko, N.Yu., and Buchilin, N.V., Glass-based porous materials, Steklo Keram., 2008, no. 10, pp. 13–16.

    Google Scholar 

  11. Belyakov, A.V., Lukin, E.S., Safronova, T.V., Safina, M.N., and Putlyaev, V.I., Calcium phosphate-based porous materials, Steklo Keram., 2008, no. 10, pp. 17–19.

    Google Scholar 

  12. Slosarczyk, A., Stobierska, E., and Paszkiewicz, Z., Porous hydroxyapatite ceramics, J. Mater. Sci. Lett., 1999, no. 18, pp. 1163–1165.

    Article  CAS  Google Scholar 

  13. Yamasaki, N., Kai, T., Nishioka, M., Yanagisawa, K., et al., Porous hydroxyapatite ceramics prepared by hydrothermal hot-pressing, J. Mater. Sci. Lett., 1990, no. 10, pp. 1150–1152.

    Article  Google Scholar 

  14. Liu, D., Preparation and characterization of porous HA bioceramic via a slip-casting route, J. Ceram. Int., 1997, vol. 24, pp. 441–446.

    Article  Google Scholar 

  15. Engin, N.O. and Tas, A.C., Preparation of porous Ca10(PO4)6(OH)2 and a-Ca3(PO4)2 bioceramics, J. Am. Ceram. Soc., 2000, no. 7, pp. 1581–1584.

    Google Scholar 

  16. Sepulveda, P., Ortega, F.S., Innocentini, M.D.M., and Pandolfelli, V.C., Properties of highly porous hydroxyapatite obtained by the gel casting of foams, J. Am. Ceram. Soc., 2000, vol. 83, no. 12, pp. 3021–3024.

    Article  CAS  Google Scholar 

  17. Guzman, I.Ya., Khimicheskaya tekhnologiya keramiki (Chemical Technology of Ceramics), Moscow: Stroimaterialy, 2003, p. 471.

    Google Scholar 

  18. Komlev, V.S. and Barinov, S.M., Porous hydroxyapatite ceramics of bi-modal pore size distribution, J. Mater. Sci. Mater. Med., 2002, vol. 13, pp. 295–299.

    Article  CAS  Google Scholar 

  19. Nakahira, A., Tamai, M., and Miki, S., Fracture behavior and biocompatibility evaluation of nyloninfiltrated porous hydroxyapatite, J. Mater. Sci. Mater. Med., 2002, vol. 37, pp. 4425–2230.

    Article  CAS  Google Scholar 

  20. Nursen, K., Muharrem, T., and Feza, K., Fabrication and characterization of porous tricalcium phosphate ceramics, Ceram. Int., 2004, vol. 30, pp. 205–211.

    Article  Google Scholar 

  21. Descamps, M., Hornez, J.C., and Leriche, A., Manufacture of hydroxyapatite beads for medical applications, J. Eur. Ceram. Soc., 2009, vol. 29, pp. 369–375.

    Article  CAS  Google Scholar 

  22. Mao, X., Wang, S., and Shimai, S., Porous ceramics with tri-modal pores prepared by foaming and starch consolidation, Ceram. Int., 2006, vol. 34, pp. 107–112.

    Article  Google Scholar 

  23. Engin, N.O. and Tas, A.C., Manufacture of macroporous calcium hydroxyapatite bioceramics, J. Eur. Ceram. Soc., 1999, vol. 19, pp. 2569–2572.

    Article  CAS  Google Scholar 

  24. Binner, G.P. and Reichert, J., Processing of hydroxyapatite ceramic foams, J. Mater. Sci. Mater. Med., 1996, vol. 31, pp. 5717–5723.

    Article  CAS  Google Scholar 

  25. Pereira, M.M., Jones, J.R., Orefice, R.L., and Hench, L.L., Preparation of bioactive glass–polyvinyl alcohol hybrid foams by the sol–gel method, J. Mater. Sci. Mater. Med., 2005, vol. 16, pp. 1045–1050.

    Article  CAS  Google Scholar 

  26. Hsu, Y.H., Turner, I.G., and Miles, A.W., Fabrication and mechanical testing of porous calcium phosphate bioceramic granules, J. Mater. Sci. Mater. Med., 2007, vol. 18, pp. 1931–1937.

    Article  CAS  Google Scholar 

  27. Hsu, Y.H., Turner, I.G., and Miles, A.W., Fabrication of porous bioceramics with porosity gradients similar to the bimodal structure of cortical and cancellous bone, J. Mater. Sci. Mater. Med., 2007, vol. 18, pp. 2251–2256.

    Article  CAS  Google Scholar 

  28. Miao, X., Tan, D.M., Li, J., Xiao, Y., and Crawford, R., Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid), Acta Biomater., 2008, vol. 4, pp. 638–645.

    Article  CAS  Google Scholar 

  29. Smirnov, V.V., Goldberg, M.A., Shvorneva, L.I., Fadeeva, I.V., Shibaeva, T.V., and Barinov, S.M., Synthesis of composite biomaterials in the hydroxyapatite–calcite system, Dokl. Chem., 2010, vol. 432, part 1, pp. 151–154.

    Article  CAS  Google Scholar 

  30. Leong, K.F., Cheah, C.M., and Chua, C.K., Solid free form fabrication of three-dimensional scaffolds for engineering replacement tissues and organs, Biomaterials, 2003, vol. 24, pp. 2363–2378.

    Article  CAS  Google Scholar 

  31. Seitz, H., Rieder, W., Irsen, S., Leukers, B., and Tille, C., Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering, J. Biomed. Mater. Res. B, 2005, vol. 74, pp. 782–788.

    Article  Google Scholar 

  32. Shanjani, Y., De Croos, J.N.A., Pilliar, R.M., Kandel, R.A., and Toyoserkani, E., Solid freeform fabrication of porous calcium polyphosphate structures for tissue engineering purposes, J. Biomed. Mater. Res. B, 2010, vol. 93, pp. 510–519.

    Article  Google Scholar 

  33. Mikolajek, M., Friedrich, A., Bauer, W., and Binder, J.R., Requirements to ceramic suspensions for inkjet printing, Ceram. Forum Int., 2015, vol. 92, no. 3, pp. E25–E29.

    Google Scholar 

  34. Fedotov, A.Yu., Komlev, V.S., Goldberg, M.A., Smirnov, V.V., Sviridova, I.K., Sergeeva, N.S., Kirsanova, V.A., Ievlev, V.M., and Barinov, S.M., Highporous composites in the bipolymer–calcite system for the use in tissue engineering, Dokl. Chem., 2011, vol. 437, part 1, pp. 72–74.

    Article  CAS  Google Scholar 

  35. Fedotov, A.Yu., Smirnov, V.V., Fomin, A.S., Fadeeva, I.V., and Barinov, S.M., Porous chitosan matrices reinforced by bioactive calcium compounds, Dokl. Chem., 2008, vol. 423, part 2, pp.330–332.

    Article  CAS  Google Scholar 

  36. Fadeeva, I.V., Barinov, S.M., Fedotov, A.Yu., and Komlev, V.S., Interactions of calcium phosphates with chitosan, Dokl. Chem., 2011, vol. 441, part 2, pp. 387–390.

    Article  CAS  Google Scholar 

  37. Fedotov, A.Yu., Barinov, S.M., Fadeeva, I.V., Egorov, A.A., Petrakova, N.V., Usachev, M.A., and Komlev, V.S., Synthesis of calcium phosphates on chitosan macromolecules in the presence of amino acids, Dokl. Chem., 2013, vol. 451, part 2, pp. 207–210.

    Article  CAS  Google Scholar 

  38. Fedotov, A.Yu., Komlev, V.S., Teterina, A.Yu., Barinov, S.M., and Fadeeva, I.V., Deformable calcium phosphate/chitosan bone cements, Materialovedenie, 2013, no. 5, pp. 44–48.

    Google Scholar 

  39. Fedotov, A.Yu., Barinov, S.M., Teterina, A.Yu., Fadeeva, I.V., and Komlev, V.S., Composite bone cement in the calcium phosphates–chitosan system, Dokl. Chem., 2013, vol. 448, no. 2, pp. 68–70.

    Article  CAS  Google Scholar 

  40. Teterina, A.Yu., Fedotov, A.Yu., Egorov, A.A., Barinov, S.M., and Komlev, V.S., Microstructure formation in porous calcium phosphate–chitosan bone cements, Inorg. Mater., 2015, vol. 51, no. 4, pp. 396–399.

    Article  CAS  Google Scholar 

  41. Popov, V.K., Komlev, V.S., and Chichkov, B.N., Calcium phosphate blossom for bone tissue. 3D printing scaffolds, Mater. Today, 2014, vol. 2, pp. 96–97.

    Article  Google Scholar 

  42. Komlev, V.S., Popov, V.K., Mironov, A.V., Fedotov, A.Yu., Teterina, A.Yu., Smirnov, I.V., Bozo, I.Y., Rybko, V.A., and Deev, R.V., 3D printing of octacalcium phosphate bone substitutes, Frontiers Bioeng. Biotechnol., 2015. doi 10.3389/fbioe.2015.00081

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Barinov.

Additional information

Original Russian Text © S.M. Barinov, V.S. Komlev, 2016, published in Neorganicheskie Materialy, 2016, Vol. 52, No. 4, pp. 383–391.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barinov, S.M., Komlev, V.S. Approaches to the fabrication of calcium phosphate-based porous materials for bone tissue regeneration. Inorg Mater 52, 339–346 (2016). https://doi.org/10.1134/S0020168516040026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168516040026

Keywords

Navigation