Skip to main content
Log in

Thermodynamic properties of TeO2-ZnO glasses in the range 0–650 K

  • Published:
Inorganic Materials Aims and scope

Abstract

The heat capacity C 0p of (TeO2)n(ZnO)1 − n (n = 0.65, 0.70, 0.80) tellurite glasses has been determined by precision adiabatic (6–350 K) and dynamic scanning (320–650 K) calorimetry. The thermodynamic characteristics of their devitrification and glassy state have been determined. The experimental data have been used to calculate the standard thermodynamic functions of samples in the glassy and “supercooled liquid” states (0–650 K): heat capacity C 0p (T), enthalpy H 0(T) − H 0(0), entropy S 0(T) − S 0(0), and Gibbs function G 0(T) − H 0(0). Multifractal processing of the low-temperature heat capacity data has been used to assess the character of structural heterodynamicity of the tellurite glasses. The heat capacity of the glasses has been analyzed in comparison with that of their constituent oxides. The composition dependences of the glass transition temperature, crystallization onset temperature, and thermodynamic functions at 298.15 and 600 K have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ding, Y., Jiang, S., Hwang, B.C., et al., Spectral Properties of Erbium-Doped Lead Halotellurite Glasses for 1.5 μm Broadband Amplification, Opt. Mater., 2000, vol. 15, no. 2, pp. 123–130.

    Article  CAS  Google Scholar 

  2. Wang, J.S., Vogel, E.M., and Snitzer, E., Tellurite Glass: A New Candidate for Fiber Devices, Opt. Mater., 1994, vol. 3, pp. 187–203.

    Article  CAS  Google Scholar 

  3. Plotnichenko, V.G., Sokolov, V.O., Koltashev, V.V., et al., Raman Bound Intensities of Tellurite Glasses, Opt. Lett., 2005, vol. 30, no. 10, pp. 1156–1158.

    Article  CAS  Google Scholar 

  4. Vrillet, G., Thomas, P., Coudere, V., et al., Second Harmonic Generation in Optically Poled Tellurite Glasses Doped with Heavy Metal Oxides, J. Non-Cryst. Solids, 2004, vol. 345/346, pp. 417–421.

    Article  Google Scholar 

  5. Burgeret, H., Kneipp, K., Hobert, H., et al., Glass Formation, Properties, and Structure of Glasses, J. Non-Cryst. Solids, 1992, vol. 151, pp. 134–142.

    Google Scholar 

  6. Komatsu, T., Noguchi, T., and Benino, Y., Heat Capacity Changes and Structural Relaxation at Glass Transition in Mixed-Alkali Tellurite Glasses, J. Non-Cryst. Solids, 1997, vol. 222, pp. 206–211.

    CAS  Google Scholar 

  7. Tanaka, K., Hirao, K., Kashima, K., et al., Temperature Dependence of Specific Heat of Sodium Tellurite Glasses, Phys. Chem. Glasses, 1997, vol. 38, pp. 87–91.

    CAS  Google Scholar 

  8. Varushchenko, R.M., Druzhinina, A.I., and Sorkin, E.L., Low Temperature Heat Capacity of 1-Bromoperfluorooctane, J. Chem. Thermodyn., 1997, vol. 29, pp. 623–637.

    CAS  Google Scholar 

  9. Yagfarov, M.Sh., A New Method for Measuring Heat Capacity and Heat Effects, Zh. Fiz. Khim., 1968, vol. 43, no. 6, pp. 1620–1625.

    Google Scholar 

  10. Kabo, A.G. and Diky, V.V., Details of Calibration of a Scanning Calorimeter of the Triple Heat Bridge Type, Thermochim. Acta, 2000, vol. 347, pp. 79–84.

    Article  CAS  Google Scholar 

  11. Codata Key Values for Thermodynamics, Cox, J.D. et al., Eds., New York: Hemisphere, 1984.

    Google Scholar 

  12. Termicheskie konstanty veshchestv: Spravochnik (Thermal Constants of Substances: A Handbook), Glushko, V.P., Ed., Moscow: VINITI, 1965–1972.

    Google Scholar 

  13. Yakubov, T.S., Heat Capacity of Fractal Solids, Dokl. Akad. Nauk SSSR, 1990, vol. 310, pp. 145–149.

    Google Scholar 

  14. Izotov, A.D., Shebershneva, O.V., and Gavrichev, K.S., A Fractal Model for Low-Temperature Heat Capacity, Trudy Vserossiiskoi konferentsii po termicheskomu analizu i kalorimetrii (Proc. All-Russia Conf. on Thermal Analysis and Calorimetry), Kazan, 1996, pp. 200–202.

  15. Lazarev, V.B., Izotov, A.D., Gavrichev, K.S., and Shebershneva, O.V., Fractal Model of Heat Capacity for Substances with Diamond-like Structures, Thermochim. Acta, 1995, vol. 269, pp. 109–116.

    Article  Google Scholar 

  16. Tarasov, V.V., Theory of Heat Capacity of Chain and Layer Structures, Zh. Fiz. Khim., 1950, vol. 24, pp. 111–128.

    CAS  Google Scholar 

  17. Markin, A.V., Smirnova, N.N., Lebedev, B.V., et al., Thermodynamic and Dilatometric Properties of C60 Fullerene Dimers, Fiz. Tverd. Tela (S.-Peterburg), 2003, vol. 45, no. 4, pp. 761–766.

    Google Scholar 

  18. Tarasov, V.V. and Yunitskii, G.A., Theory of Heat Capacity of Chain-Layer Structures, Zh. Fiz. Khim., 1965, vol. 39, pp. 2077–2080.

    CAS  Google Scholar 

  19. Alford, S. and Dole, M., Specific Heat of Synthetic High Polymers, J. Am. Chem. Soc., 1955, vol. 77, pp. 4774–4777.

    Article  CAS  Google Scholar 

  20. Adam, G. and Gibbs, J.U., On the Temperature Dependence of Cooperative Relaxation Properties in Glass-Forming Liquids, J. Chem. Phys., 1965, vol. 43, pp. 139–146.

    CAS  Google Scholar 

  21. Kauzmann, W., The Nature of the Glassy State and Behavior of Liquids at Low Temperatures, Chem. Rev. (Washington, D.C.), 1948, vol. 43, pp. 219–256.

    CAS  Google Scholar 

  22. Lebedev, B.V. and Rabinovich, I.B., Zero-Point Entropy of Some Glassy Polymers from Calorimetry Data, Dokl. Akad. Nauk SSSR, 1977, vol. 237, pp. 641–644.

    CAS  Google Scholar 

  23. Lebedev, B.V., Application of Precise Calorimetry in Study of Polymers and Polymerization Processes, Thermochim. Acta, 1997, vol. 297, pp. 143–149.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.N. Smirnova, A.V. Markin, K.V. Kandeev, M.F. Churbanov, I.A. Grishin, 2006, published in Neorganicheskie Materialy, 2006, Vol. 42, No. 4, pp. 502–510.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smirnova, N.N., Markin, A.V., Kandeev, K.V. et al. Thermodynamic properties of TeO2-ZnO glasses in the range 0–650 K. Inorg Mater 42, 448–455 (2006). https://doi.org/10.1134/S0020168506040200

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168506040200

Keywords

Navigation