Skip to main content
Log in

Two-Phase Flow Boiling of Nanofluids in Mini- and Microchannels

  • REVIEW
  • Published:
High Temperature Aims and scope

Abstract

The effects of single-phase nanofluid flow in mini-/microchannels have been investigated both experimentally and numerically in the literature during the last decade. Almost all the studies show a similar trend by which the engagement of single-phase nanofluids to mini-/microchannels provides significant improvements in the thermal performance. However, there are only limited number of publications in the literature, which have experimentally focused on the heat transfer performance of nanofluids for two-phase flow boiling in mini-/microchannels. Moreover, there are some noticeably conflicting trends concluded by these experimental studies, particularly for the boiling heat transfer coefficient. In the present review, the key clue to figure out the contradictions reflected in the literature on the experimental measurements of boiling heat transfer coefficient is traced to the various deposition patterns of nanoparticles of different sizes on the boiling surface and subsequent changes in the morphology and boiling behavior as well. In addition, the crucial parameters of nanofluids in mini-/microchannels during flow boiling are identified and the effects of the parameters on the boiling heat transfer performance are comprehensively reviewed. The agreements and inconsistencies reported in the literature are also identified and discussed. Finally, a series of suggestions are provided for future experimental studies of nanofluids flow boiling to minimize the contradictory reports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.

REFERENCES

  1. Kandlikar, S.G., Garimella, S., Li, D., Colin, S., and King, M., Heat Transfer and Fluid Flow in Minichannels and Microchannels, Amsterdam: Elsevier, 2006.

    Google Scholar 

  2. Kandlikar, S.G. and Steinke, M.E., Proc. 1st Int. Conf. Minichannels and Microchannels, New York: ASME, 2003, Paper ICMM2003-1124.

  3. Mehendale, S.S., Jacobi, A.M., and Shah, R.K., Appl. Mech. Rev., 2000, vol. 53, p. 175.

    Article  ADS  Google Scholar 

  4. Kandlikar, S.G. and Grande, W.G., Heat Transfer Eng., 2003, vol. 24, p. 3.

    Article  ADS  CAS  Google Scholar 

  5. ChEng., P., Wu, H.Y., and Hong, F.J., J. Heat Transfer, 2007, vol. 129, p. 101.

    Article  CAS  Google Scholar 

  6. Wen, D., Lin, G., Vafaei, S., and Zhang, K., Particuology, 2009, vol. 7, p. 141.

    Article  CAS  Google Scholar 

  7. Choi, S.U.S. and Eastman, J.A., Proc. Int. Mech. Engineering Congress and Exposition, San Francisco: ASME, 1995, p. 12.

  8. Henderson, K., Park, Y.G., Liu, L., and Jacobi, A.M., Int. J. Heat Mass Transfer, 2010, vol. 53, p. 944.

    Article  CAS  Google Scholar 

  9. Barber, J., Brutin, D., and Tadrist, L., Nanoscale Res. Lett., 2011, vol. 6, p. 280.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. Ali, N., Teixeira, J.A., and Addali, A., J. Nanomater., 2018, vol. 2018, p. 6978130.

    Google Scholar 

  11. Choi, S.U.S. and Eastman, J.A., Enhancing thermal conductivity of fluids with nanoparticles, Argonne National Lab., US Department of Energy, 1995.

    Google Scholar 

  12. Czaplicka, N., Grzegorska, A., Wajs, J., Sobczak, J., and Rogala, A., Int. J. Mol. Sci., 2021, vol. 22, no. 17, p. 9201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Timofeeva, E.V., in Two Phase Flow, Phase Change and Numerical Modeling, 2011. https://doi.org/10.5772/22158

  14. Noori, T., Ghangrekar, M.M., Mitra, A., and Mukherjee, C.K., Proc. Int. Conf. Recent Advances in Bioenergy Research, Kapurthala, 2015, p. 14.

  15. Said, Z. and Saidur, R., in Nanofluid Heat and Mass Transfer in Engineering Problems, Kandelousi, M.S., Ed., London: InTech, 2017. https://doi.org/10.5772/65610

  16. Li, Z., Sarafraz, M.M., Mazinani, A., Hayat, T., Alsulami, H., and Goodarzi, M., Int. J. Heat Mass Transfer, 2020, vol. 156, p. 119780.

    Article  CAS  Google Scholar 

  17. Nakhchi, M.E. and Esfahani, J.A., Adv. Powder Technol., 2019, vol. 30, p. 1338.

    Article  CAS  Google Scholar 

  18. Hadavand, M., Yousefzadeh, S., Akbari, O.A., Pourfattah, F., Nguyen, H.M., and Asadi, A., Appl. Therm. Eng., 2019, vol. 162, p. 114298.

    Article  CAS  Google Scholar 

  19. Anu, Mary., Ealia, S., and Saravanakumar, M.P., IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 263, p. 032019.

  20. Xie, H.Q., Wang, J., Xi, T., Liu, Y., and Ai, F., J. Appl. Phys., 2002, vol. 91, p. 4568.

    Article  ADS  CAS  Google Scholar 

  21. Kim, S.H., Choi, S.R., and Kim, D., Trans. ASME C, 2007, vol. 129, p. 298.

    Article  CAS  Google Scholar 

  22. Li, C.H. and Peterson, G.P., J. Appl. Phys., 2007, vol. 1010, p. 44312.

    Article  Google Scholar 

  23. Chon, C.H. and Kihm, K.D., Appl. Phys. Lett., 2005, vol. 87, p. 153107.

    Article  ADS  Google Scholar 

  24. Yu, W.H., France, D.M., Routbort, J.L., and Choi, S.U., Heat Transfer Eng., 2008, vol. 29, p. 432.

    Article  ADS  CAS  Google Scholar 

  25. Beck, M.P., Yuan, Y., Warrier, P., and Teja, A.S., J. Nanopart. Res., 2009, vol. 11, p. 1129.

    Article  ADS  CAS  Google Scholar 

  26. Lu, W.Q. and Fan, Q.M., Eng. Anal. Boundary Elem., 2008, vol. 32, p. 282.

    Article  Google Scholar 

  27. Gang, C., Yu, W., Singh, D., Cookson, D., and Routbort, J., J. Nanopart. Res., 2008, vol. 10, p. 1109.

    Article  Google Scholar 

  28. Lee, J.H., Lee, S.H., and Jang, S.P., Appl. Phys. Lett., 2014, vol. 104, p. 161908.

    Article  ADS  Google Scholar 

  29. Pryazhnikov, M.I., Minakov, A.V., Rudyak, V.Y., and Guzei, D.V., Int. J. Heat Mass Transfer, 2017, vol. 104, no. 1, p. 1275.

    Article  CAS  Google Scholar 

  30. Zhu, H.T., Zhang, C.Y., Tang, Y.M., and Wang, J.X., J. Phys. Chem. C, 2007, vol. 111, no. 4, p. 1646.

    Article  CAS  Google Scholar 

  31. Keblinski, P., Prasher, R., and Eapen, J., J. Nanopart. Res., 2008, vol. 10, p. 1089.

    Article  ADS  Google Scholar 

  32. Rudyak, V.Y. and Belkin, A.A., Nanosyst. Phys. Chem. Math., 2010, vol. 1, no. 1, p. 156.

    Google Scholar 

  33. Rudyak, V.Y., Belkin, A.A., and Tomilina, E.A., Tech. Phys. Lett., 2010, vol. 36, no. 14, p. 49.

    Article  Google Scholar 

  34. Pozhar, L.A., Phys. Rev. E, 2000, vol. 61, p. 1432.

    Article  ADS  CAS  Google Scholar 

  35. Chang, H., Jwo, C.S., Lo, C.H., and Tsung, T.T., Rev. Adv. Mater. Sci., 2005, vol. 10, p. 128.

    CAS  Google Scholar 

  36. McPhie, M.G., Daivis, P.J., and Snook, I.K., Phys. Rev. E, 2006, vol. 74, p. 031201.

    Article  ADS  Google Scholar 

  37. Imofeeva, E.V., Gavrilov, A.N., McCloskey, J.M., Tolmachev, Y.V., Sprunt, S., Lopatina, L.M., and Selinger, J.V., Phys. Rev. E, 2007, vol. 76, p. 061203.

    Article  ADS  Google Scholar 

  38. Conway, B.E. and Dobry-Duclaux, A., Rheol.: Theory Appl., 1960, vol. 3, p. 83.

    CAS  Google Scholar 

  39. Nguyen, C.T., Desgranges, F., Roy, G., Galanis, N., Mare, T., Boucher, S., and Mintsa, H.A., Int. J. Heat Fluid Flow, 2007, vol. 28, p. 1492.

    Article  CAS  Google Scholar 

  40. Hashiba, M., Okamoto, H., Nurishi, Y., and Hiramtsu, K., J. Mater. Sci., 1988, vol. 23, p. 2893.

    Article  ADS  CAS  Google Scholar 

  41. Timofeeva, E.V., Smith, S.C., Yu, W., France, D.M., Singh, D., and Routbort, J.L., Nanotecnology, 2010, vol. 21, p. 215703.

    Article  ADS  Google Scholar 

  42. Chen, H.S., Yang, W., He, Y.R., Ding, Y.L., Zhang, L.L., and Tan, C.Q., Powder Technol., 2008, vol. 183, p. 63.

    Article  CAS  Google Scholar 

  43. TsEng., W.J. and Lin, K.C., Mater. Sci. Eng., A, 2003, vol. 355, p. 186.

    Article  Google Scholar 

  44. Ramesh, G. and Prabhu, N., Nanoscale Res. Lett., 2011, vol. 6, p. 334.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  45. Ahammed, N., Asirvatham, L.G., and Wongwises, S., J. Therm. Anal. Calorim., 2016, vol. 123, p. 1399.

    Article  CAS  Google Scholar 

  46. Elias, M.M., Mahbubul, I.M., Saidur, R., Sohel, M.R., Shahrul, I.M., Khaleduzzaman, S.S., and Sadeghipour, S., Int. Commun. Heat Mass Transfer, 2014, vol. 54, p. 48.

    Article  CAS  Google Scholar 

  47. Das, S.K., Narayan, G.P., and Baby, A.K., J. Nanopart. Res., 2008, vol. 10, p. 1099.

    Article  ADS  Google Scholar 

  48. Das, S.K., Putra, N., and Roetzel, W., Int. J. Heat Mass Transfer, 2003, vol. 46, p. 851.

    Article  CAS  Google Scholar 

  49. Kim, S.J., Bang, I.C., Buongiorno, J., and Hu, L.W., Int. J. Heat Mass Transfer, 2007, vol. 50, p. 4105.

    Article  CAS  Google Scholar 

  50. Kathiravan, R., Kumar, R., and Gupta, A., J. Heat Transfer, 2009, vol. 131, p. 1.

    Article  Google Scholar 

  51. Murshed, S.M., Tan, S.H., and Nguyen, N.T., J. Phys. D: Appl. Phys., 2008, vol. 41, p. 085502.

    Article  Google Scholar 

  52. Jeong, Y.H., Chang, W.J., and Chang, S.H., Int. J. Heat Mass Transfer, 2008, vol. 51, p. 3025.

    Article  CAS  Google Scholar 

  53. PEng., H., Ding, G., Hu, H., and Jiang, W., Int. J. Therm. Sci., 2010, vol. 49, p. 2428.

    Article  CAS  Google Scholar 

  54. Khaleduzzaman, S.S., Mahbubul, I.M., Shahrul, I.M., and Saidur, S., Int. Commun. Heat Mass Transfer, 2013, vol. 49, p. 110.

    Article  CAS  Google Scholar 

  55. Moosavi, M., Goharshadi, E.K., and Youssefi, A., Int. J. Heat Fluid Flow, 2010, vol. 31, p. 599.

    Article  CAS  Google Scholar 

  56. Tanvir, S. and Qiao, L., Nanoscale Res. Lett., 2012, vol. 7, p. 226.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  57. Sefiane, K., Skilling, J., and MacGillivray, J., Adv. Colloid Interface Sci., 2008, vol. 138, p. 101.

    Article  CAS  PubMed  Google Scholar 

  58. Vassallo, P., Kumar, R., and Damico, S., Int. J. Heat Mass Transfer, 2004, vol. 47, p. 407.

    Article  CAS  Google Scholar 

  59. Kim, H., Kim, J., and Kim, M.H., Int. J. Heat Mass Transfer, 2006, vol. 49, p. 5070.

    Article  CAS  Google Scholar 

  60. Kim, S.J., Bang, I.C., Buongiorno, J., and Hu, L.W., Appl. Phys. Lett., 2006, vol. 89, p. 153107.

    Article  ADS  Google Scholar 

  61. Kim, S.J., Bang, I.C., Buongiorno, J., and Hu, L.W., Bull. Pol. Acad. Sci.: Tech. Sci., 2007, vol. 55, p. 211.

    Article  CAS  Google Scholar 

  62. Wen, D., Int. J. Heat Mass Transfer, 2008, vol. 51, p. 4958.

    Article  CAS  Google Scholar 

  63. Wen, D., Zhang, L., and He, Y., Heat Mass Transfer, 2009, vol. 45, p. 1061.

    Article  ADS  Google Scholar 

  64. Lee, J., Yoon, Y.J., Eaton, J.K., Goodson, K.E., and Bai, S.J., Int. J. Precis. Eng. Manuf., 2014, vol. 15, p. 703.

    Article  Google Scholar 

  65. Steinke, M.E. and Kandlikar, S.G., J. Heat Transfer, 2004, vol. 126, p. 518.

    Article  CAS  Google Scholar 

  66. Kandlikar, S.G., Proc. 3rd Int. Conf. on Microchannels and Minichannels, Keynote Paper, Toronto: ASME, 2005, Paper 75086.

  67. Boudouh, M., Gualous, H.L., and De Labachelerie, M., Appl. Therm. Eng., 2010, vol. 30, p. 2619.

    Article  CAS  Google Scholar 

  68. Xu, L. and Xu, J., Int. J. Heat Mass Transfer, 2012, vol. 55, p. 5673.

    Article  CAS  Google Scholar 

  69. Yu, L., Sur, A., and Liu, D., J. Heat Transfer, 2015, vol. 137, p. 051502.

    Article  Google Scholar 

  70. ChEng., P., Wu, H.Y., and Hong, F.J., J. Heat Transfer Trans., 2007, vol. 129, p. 101.

    Article  CAS  Google Scholar 

  71. Faulkner, D., Khotan, M., and Shekarriz, R., Proc. 19th IEEE Semi-Therm. Symposium, 2003, p. 223.

  72. Lee, J. and Mudawar, I., Int. J. Heat Mass Transfer, 2007, vol. 50, p. 452.

    Article  CAS  Google Scholar 

  73. Khanikar, V., Mudawar, I., and Fisher, T., Int. J. Heat Mass Transfer, 2009, vol. 52, p. 3805.

    Article  CAS  Google Scholar 

  74. Vafaei, S. and Wen, D., J. Heat Transfer, 2010, vol. 132, p. 102404.

    Article  Google Scholar 

  75. Vafaei, S. and Wen, D., J. Nanopart. Res., 2011, vol. 13, p. 1063.

    Article  ADS  CAS  Google Scholar 

  76. Chehade, A.A., Gualous, H.L., Masson, S.L., Fardoun, F., and Besq, A., Nanoscale Res. Lett., 2013, vol. 8, p. 130.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  77. Vafaei, S. and Wen, D., Chem. Eng. Res. Des., 2014, vol. 92, p. 2339.

    Article  CAS  Google Scholar 

  78. Duursma, G., Sefiane, K., Dehaene, A., Harmand, S., and Wang, Y., Heat Transfer Eng., 2015, vol. 36, p. 1252.

    Article  ADS  CAS  Google Scholar 

  79. Zhang, C., Zhang, L., Xu, H., Wang, D., and Ye, B., Exp. Therm. Fluid Sci., 2017, vol. 86, p. 1.

    Article  Google Scholar 

  80. Moreira, T.A., Nascimento, F.J., and Ribatski, G., Exp. Therm. Fluid Sci., 2017, vol. 89, p. 72.

    Article  CAS  Google Scholar 

  81. Dong, S., Jiang, H., Xie, Y., Wang, X., Hu, Z., and Wang, J., Chin. J. Aeronaut., 2019, vol. 32, no. 5, p. 1136.

    Article  Google Scholar 

  82. Lee, J. and Mudawar, I., Int. J. Heat Mass Transfer, 2009, vol. 52, p. 3341.

    Article  CAS  Google Scholar 

  83. Thome, J.R., Dupont, V., and Jacobi, A.M., Int. J. Heat Mass Transfer, 2004, vol. 47, p. 3375.

    Article  CAS  Google Scholar 

  84. Yarin, L.P., Mosyak, A., and Hetsroni, G., Fluid Flow, Heat Transfer and Boiling in Micro-Channels, New York: Springer, 2009.

    Book  Google Scholar 

  85. Wasan, D.T. and Hikolov, A.D., Nature, 2001, vol. 423, p. 156.

    Article  ADS  Google Scholar 

  86. Chengara, A., Nikolov, A.D., Wasan, D.T., Trokhymchuk, A., and Henderson, D., J. Colloid Interface Sci., 2004, vol. 280, p. 192.

    Article  ADS  CAS  PubMed  Google Scholar 

  87. Diao, Y.H., Liu, Y., Wang, R., Zhao, Y.H., Guo, L., and Tang, X., Int. J. Heat Mass Transfer, 2013, vol. 67, p. 183.

    Article  CAS  Google Scholar 

  88. Sarafraz, M.M. and Hormozi, F., Int. Commun. Heat Mass Transfer, 2014, vol. 53, p. 116.

    Article  CAS  Google Scholar 

  89. http://ahnlab.inu.ac.kr.

  90. Ahn, H.S., Kim, H., Jo, H.J., Kang, S.H., Chang, W.P., and Kim, M.H., Int. J. Multiphase Flow, 2010, vol. 36, p. 375.

    Article  CAS  Google Scholar 

  91. Gerardi, C., Buongiorno, J., Hu, L.W., and McKrell, T., Nanoscale Res. Lett., 2011, vol. 6, p. 232.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  92. Bang, I.C. and Chang, S.H., Int. J. Heat Mass Transfer, 2005, vol. 48, p. 2407.

    Article  CAS  Google Scholar 

  93. Ahn, H.S. and Kim, M.H., J. Heat Transfer, 2012, vol. 134, p. 024001.

    Article  Google Scholar 

  94. Cieslinski, J.T. and Kaczmarczyk, T.Z., Nanoscale Res. Lett., 2011, vol. 6, p. 220.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  95. Karsli, S., Yilmaz, M., and Comakli, O., Int. J. Heat Fluid Flow, 2002, vol. 23, p. 776.

    Article  CAS  Google Scholar 

  96. Boure, J.A., Bergles, A.E., and Tong, L.S., Nucl. Eng. Des., 1973, vol. 25, p. 165.

    Article  CAS  Google Scholar 

  97. Ruspini, L.C., Marcel, C.P., and Clausse, A., Int. J. Heat Mass Transfer, 2014, vol. 71, p. 521.

    Article  CAS  Google Scholar 

  98. Carey, V.P., Liquid-Vapor Phase-Change Phenomena: New York: Taylor and Francis, 1992.

    Google Scholar 

  99. Kabir, M. and Xu, J., in Heat Transfer—Design, Experimentation, and Applications, London: Intech Open, 2020.

    Google Scholar 

  100. Kabir, M., Gemeda, T., Preller, E., and Xu, J., Int. J. Heat Mass Transfer, 2021, vol. 180, p. 121782.

    Article  Google Scholar 

  101. Shustov, M.V., Kuzma-Kichta, Yu.A., and Lavrikov, A.V., Therm. Eng., 2017, vol. 64, no. 4, p. 301.

    Article  CAS  Google Scholar 

  102. Kuzma-Kichta, Yu.A., Lavrikov, A.V., Shustov, M.V., Chursin, P.S., Chistyakova, A.V., Zvonarev, Yu.A., Zhukov, V.M., and Vasil’eva L.T., Therm. Eng., 2014, vol. 61, no. 3, p. 210.

    Article  CAS  Google Scholar 

  103. Sidik, N.A.C., Adamu, I.M., Jamil, M.M., Kefayati, G.H.R., Mamat, R., and Najafi, G., Int. Commun. Heat Mass Transfer, 2016, vol. 78, p. 68.

    Article  CAS  Google Scholar 

  104. M’hamed, B., Sidik, N.A.C., Yazid, M.N.A.W.M., Mamat, R., Najafi, G., and Kefayati, G.H.R., Int. Commun. Heat Mass Transfer, 2016, vol. 78, p. 60.

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kabir.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabir, M., Downer, J., Preller, E. et al. Two-Phase Flow Boiling of Nanofluids in Mini- and Microchannels. High Temp 61, 262–287 (2023). https://doi.org/10.1134/S0018151X23020074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X23020074

Navigation