Skip to main content
Log in

Measurement of the Thermal Conductivity and Heat Transfer Coefficient of Nanofluids with Single-Walled Nanotubes

  • THERMOPHYSICAL PROPERTIES OF MATERIALS
  • Published:
High Temperature Aims and scope

Abstract

This article is devoted to the experimental study of thermal conductivity and heat transfer of nanofluids with single-walled nanotubes. The thermal conductivity of nanofluids based on ethylene glycol, water, and isopropyl alcohol has been measured. The weight concentration of carbon tubes varied from 0.05 to 0.5%. It is shown that in all cases the thermal conductivity of nanofluids increases significantly. For example, for a nanofluid based on isopropyl alcohol at a weight concentration of 0.05%, the excess of the thermal conductivity compared to the base liquid was 10.5% and at a concentration of 0.25 it was 51%. The results of measuring the heat transfer coefficient of a nanofluid based on isopropyl alcohol in a cylindrical channel are presented. The heat transfer coefficient of the nanofluid also has high values: at a tubes concentration of 0.25%, the heat transfer coefficient is 1.5 times higher than that of the base liquid. Along with the heat transfer coefficient, the pressure drop in the channel has been systematically studied, for which the viscosity of the nanofluids used has been previously studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Wang, X.-Q. and Mujumdar, A.S., Int. J. Thermal Sci., 2007, vol. 46, p. 1.

    Article  Google Scholar 

  2. Daungthongsuk, W. and Wongwises, S., Renewable Sustainable Energy Rev., 2007, vol. 11, p. 797.

    Article  Google Scholar 

  3. Yu, W., France, D.M., Routbort, J.L., and Choi, S.U.S., Heat Transfer Eng., 2008, vol. 29, p. 432.

    Article  ADS  Google Scholar 

  4. Kleinstreuer, K. and Yu, F., Nanoscale Res. Lett., 2011, vol. 6, no. 229, p. 22.

    Google Scholar 

  5. Pryazhnikov, M.I., Minakov, A.V., Rudyak, V.Ya., amd Guzei, D.V., Int. J. Heat Mass Transfer, 2017, vol. 104, no. 1, p. 1275.

    Article  Google Scholar 

  6. Rekhviashvili, S.Sh., Sokurov, A.A., and Bukhurova, M.M., High Temp., 2019, vol. 57, no. 4, p. 482.

    Article  Google Scholar 

  7. Kim, P., Shi, L., Majumdar, A., and McEuen, P.L., Phys. Rev. Lett., 2001, vol. 87, 215502.

    Article  ADS  Google Scholar 

  8. Yu, C., Shi, L., Yao, Z., Li, D., and Majumdar, A., Nano Lett., 2005, vol. 5, p. 1842.

    Article  ADS  Google Scholar 

  9. Choi, S., Zhang, Z., Yu, W., Lockwood, F., and Grulke, E., Appl. Phys. Lett., 2001, vol. 79, no. 14, p. 2252.

    Article  ADS  Google Scholar 

  10. Younes, H., Christensen, G., Li, D., Hong, H., and Ghaferi, A.A., J. Nanofluids, 2015, vol. 4, no. 2, p. 107.

    Article  Google Scholar 

  11. Estelle, P., Halelfadl, S., and Mare, M., J. Therm. Eng., 2015, vol. 1, no. 2, p. 381.

    Article  Google Scholar 

  12. Soltanimehr, M. and Afrand, M., Appl. Therm. Eng., 2016, vol. 105, p. 716.

    Article  Google Scholar 

  13. Tawfik, M.M., J. Renewable Sustainable Energy Rev., 2017, vol. 75, p. 1239.

    Article  Google Scholar 

  14. Akhilesh, M., Santarao, K., and Babu, M.V.S., Mech. Mech. Eng., 2018, vol. 22, no. 1, p. 207.

    Article  Google Scholar 

  15. Assael, M.J., Metaxa, I.N., Arvanitidis, J., Christofilos, D., and Lioutas, C., Int. J. Thermophys., 2005, vol. 26, p. 647.

    Article  ADS  Google Scholar 

  16. Ding, Y., Alias, H., Wen, D., and Williams, R.A., Int. J. Heat Mass Transfer, 2006, vol. 49, nos. 1–2, p. 240.

    Article  Google Scholar 

  17. Sadri, R., Ahmadi, G., Togun, H., Dahari, M., Kazi, S.N., Sadeghinezhad, E., and Zubir, N., Nanoscale Res. Lett., 2014, vol. 9, p. 151.

    Article  ADS  Google Scholar 

  18. Singh, N., Chand, G., and Kanagaraj, S., Heat Transfer Eng., 2012, vol. 33, no. 9, p. 821.

    Article  ADS  Google Scholar 

  19. Liu, M.S., Lin, M.C.C., and Wang, C.C., Nanoscale Res. Lett., 2011, vol. 6, no. 297, p. 1.

    ADS  Google Scholar 

  20. Mirbagheri, M.H., Akbari, M., and Mehmandoust, B., Int. Commun. Heat Mass Transfer, 2018, vol. 98, p. 216.

    Article  Google Scholar 

  21. Chen, L. and Xie, H., Thermochim. Acta, 2010, nos. 1–2, p. 67.

  22. Choi, T.Y., Maneshian, M.H., Kang, B., Chang, W.S., Han, C.S., and Poulikakos, D., Nanotecnology, 2009, vol. 20, 315706.

    Article  Google Scholar 

  23. Harish, C., Ishikawa, K., Einarsson, E., Aikawa, S., Chiashi, S., Shiomi, J., and Maruyama, S., Int. J. Heat Mass Transfer, 2012, vol. 55, nos. 13–14, p. 3885.

    Article  Google Scholar 

  24. Harish, C., Ishikawa, K., Einarsson, E., Aikawa, S., Inoue, T., Zhao, P., Watanabe, M., Chiashi, S., Shiomi, J., and Maruyama, S., Mater. Express, 2012, vol. 2, no. 3, p. 213.

    Article  Google Scholar 

  25. Nanda, J., Maranville, C., Bollin, S.C., Sawall, D., Ohtani, H., Remillard, J.T., and Ginder, J.M., J. Phys. Chem. C, 2008, vol. 112, no. 3, p. 654.

    Article  Google Scholar 

  26. Brunauer, S., Emmett, P.H., and Teller, E., J. Am. Chem. Soc., 1938, vol. 60, no. 2, p. 309.

    Article  ADS  Google Scholar 

  27. Strano, J.M., Moore, V.C., Miller, M.K., Allen, M.J., Haroz, E.H., Kittrell, C., Hauge, R.H., and Smalley, R.E., J. Nanosci. Nanotechnol., 2003, vol. 3, p. 81. 1.

  28. Minakov, A.V., Rudyak, V.Ya., Guzei, D.V., Pryazhnikov, M.I., Lobasov, A.S., J. Eng. Phys.Thermophysics, 2015, vol. 88, no. 1, p. 149.

  29. Maxwell, J.C., A Treatise on Electricity and Magnetism, Oxford: Clarendon, 1881.

    MATH  Google Scholar 

  30. Xie, H., Lee, H., Youn, W., and Choi, M., J. Appl. Phys., 2003, vol. 94, no. 8, p. 4967.

    Article  ADS  Google Scholar 

  31. Rudyak, V.Ya. and Krasnolutskii, S.L., Tech. Phys., 2015, vol. 60, no. 6, p. 798.

    Article  Google Scholar 

  32. Minakov, A.V., Rudyak, V.Ya., Guzei, D.V., and Lobasov, A.S., High Temp., 2015, vol. 53, no. 2, p. 246.

    Article  Google Scholar 

  33. Guzei, D.V., Minakov, A.V., and Rudyak, V.Ya., Int. J. Heat Mass Transfer, 2019, vol. 139, p. 180.

    Article  Google Scholar 

  34. Guzei, D.V., Minakov, A.V., and Rudyak, V.Ya., Fluid Dyn., 2016, vol. 51, no. 2, p. 189.

    Article  ADS  Google Scholar 

  35. Minakov, A.V., Rudyak, V.Ya., and Pryazhnikov, M.I., Heat Transfer Eng., 2021, vol. 42, no. 12, p. 1024.

    Article  ADS  Google Scholar 

  36. Minakov, A.V., Rudyak, V.Ya., and Pryazhnikov, M.I., Colloids Surf., A, 2018, vol. 554, p. 279.

    Article  Google Scholar 

  37. Rudyak, V.Ya., Minakov, A.V., and Pryazhnikov, M.I., J. Mol. Liq., 2021, vol. 329, no. 1, 115517.

    Article  Google Scholar 

  38. Schierz, A. and Zanker, H., Environ. Pollut., 2009, vol. 157, p. 1088.

    Article  Google Scholar 

  39. Chiang, Y.C., Lin, W.H., and Chang, Y.C., Appl. Surf. Sci., 2011, vol. 257, p. 2401.

    Article  ADS  Google Scholar 

  40. Manzetti, S. and Gabriel, J.-C.P., Int. Nano Lett., 2019, vol. 9, p. 31.

    Article  Google Scholar 

  41. Ali, A.J. and Tugolukov, E.N., IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 693, 012001.

Download references

Funding

This work was supported by the Russian Science Foundation (agreement no. 20-19-00043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Rudyak.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudyak, V.Y., Minakov, A.V., Pryazhnikov, M.I. et al. Measurement of the Thermal Conductivity and Heat Transfer Coefficient of Nanofluids with Single-Walled Nanotubes. High Temp 60, 631–638 (2022). https://doi.org/10.1134/S0018151X22030026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X22030026

Navigation