Skip to main content
Log in

Molecular Modeling of the Thermal Accommodation of Argon Atoms on Clusters of Iron Atoms

  • THERMOPHYSICAL PROPERTIES OF MATERIALS
  • Published:
High Temperature Aims and scope

Abstract

The interaction of a flow of argon atoms at a temperature of 300 K with clusters of iron atoms is studied at a cluster temperature of 500 to 2500 K. The amount of energy acquired by the argon atom increases, and the thermal-accommodation coefficient decreases according to the Arrhenius law with increasing cluster temperature. The relationship between the coefficient of thermal accommodation and the time of interaction of the incident atom with the cluster is revealed. The heat-transfer coefficient is calculated. The dependences of the thermal-accommodation coefficient and the amount of energy received by an atom on the number of atoms N in the cluster turned out to be linear along N–1/3. The method of molecular dynamics is applied. The model consists of a cluster and one incident atom; the trajectories of the incident atom are calculated. The amount of energy produced by an atom and the coefficient of thermal accommodation are found from a comparison of the initial and final velocities of the incident atom. To simulate the flow, 10 to 300 000 trajectories of the incident atom are averaged with respect to the cluster size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Eremin, A.V., Gurentsov, E.V., and Priemchenko, K.Yu., J. Nanopart. Res., 2013, vol. 15, p. 1537.

    Article  Google Scholar 

  2. Gel’chinskii, B.R., Vorontsov, A.G., Korenchenko, A.E., and Leont’ev, L.I., Dokl. Phys. Chem., 2011, vol. 436, no. 2, p. 15.

    Article  Google Scholar 

  3. Golovin, Yu.I., Klyachko, N.L., Golovin, D.Yu., Efremova, M.V., Samodurov, A.A., Sokol’ski-Papkov, M., and Kabanov, A.V., Tech. Phys. Lett., 2013, vol. 39, no. 3, p. 24.

    Google Scholar 

  4. Eremin, A.V., Gurentsov, E.V., Hofmann, M., Kock, B., and Schulz, C., J. Phys. D: Appl. Phys., 2006, vol. 39, p. 4359.

    Article  ADS  Google Scholar 

  5. Baranyshyn, Y.A., Fisenko, S.P., and Penyazkov, O.G., Int. J. Heat Mass Transfer, 2010, vol. 53, p. 5465.

    Article  Google Scholar 

  6. Gurentsov, E.V., Eremin, A.V., and Mikheyeva, E.Yu., High Temp., 2017, vol. 55, no. 5, p. 723.

    Article  Google Scholar 

  7. Eremin, A.V., Gurentsov, E.V., Kock, B., and Schulz, Ch., J. Phys. D: Appl. Phys., 2008, vol. 41, no. 5, 055203.

    Article  ADS  Google Scholar 

  8. Daun, K., Sipkens, T.A., Titantah, J.T., and Karttunen, M., Appl. Phys. B: Laser Opt., 2013, vol. 8, no. 3, p. 409.

    Article  ADS  Google Scholar 

  9. Insepov, Z.A., Karatajev, E.M., and Norman, G.E., Z. Phys. D: At., Mol. Clusters, 1991, vol. 20, p. 449.

    Article  Google Scholar 

  10. Insepov, Z.A., Karataev, E.M., and Norman, G.E., in Proc. Int. Workshop “Nucleation–Clusters–Aractals,” Serrahn, Germany, 1991, p. 141.

  11. Vorontsov, A.G., Gel’chinskii, B.R., and Korenchenko, A.E., Vestn. Yuzhno-Ural. Univ., Ser. Mat. Mekh. Fiz., 2011, no. 4, p. 61.

  12. Vorontsov, A.G., Gel’chinskii, B.R., and Korenchenko, A.E., J. Exp. Theor. Phys., 2012, vol. 115, no. 5, p. 789.

    Article  ADS  Google Scholar 

  13. Korenchenko, A.E., Vorontsov, A.G., and Gel’chinskii, B.R., High Temp., 2016, vol. 54, no. 2, p. 229.

    Article  Google Scholar 

  14. Goncharov, A.V. and Kashtanov, P.V., High Temp., 2011, vol. 49, no. 2, p. 178.

    Article  Google Scholar 

  15. Fisenko, S.P., Tech. Phys., 2013, vol. 58, no. 5, p. 658.

    Article  Google Scholar 

  16. Varaksin, A.Yu., High Temp., 2014, vol. 52, no. 5, p. 752.

    Article  Google Scholar 

  17. Kurganov, V.A. and Maslakova, I.V., High Temp., 2016, vol. 54, no. 4, p. 577.

    Article  Google Scholar 

  18. Minakov, A.V., Rudyak, V.Ya., Guzei, D.V., and Lobasov, A.S., High Temp., 2015, vol. 53, no. 2, p. 246.

    Article  Google Scholar 

  19. Popov, I.A., Shchelchkov, A.V., and Yarkaev, M.Z., High Temp., 2016, vol. 54, no. 6, p. 842.

    Article  Google Scholar 

  20. Valueva, E.P., High Temp., 2014, vol. 52, no. 6, p. 873.

    Article  Google Scholar 

  21. Timofeeva, E.V., Smith, D.S., Yu, W., France, D.M., Singh, D., and Routbo, J.L., Nanotecnology, 2010, vol. 21, 215703.

    Article  ADS  Google Scholar 

  22. Plimpton, S.J., J. Comput. Phys., 1995, vol. 117, no. 1, p. 1.

    Article  ADS  Google Scholar 

  23. Mendelev, M.I., Han, S., Srolovitz, D.J., Ackland, G.J., Sun, D.Y., and Asta, M., Philos. Mag. A, 2003, vol. 83, p. 3977.

    Article  ADS  Google Scholar 

  24. Smirnov, B.M., Protsessy s uchastiem malykh chastits v vozbuzhdennom i ionizovannom gaze (Processes Involving Small Particles in an Excited and Ionized Gas), Moscow: LOGOS, 2012.

  25. Smirnov, B.M., Cluster Processes in Gases and Plasmas, Berlin: Wiley, 2010.

    Book  Google Scholar 

  26. Grigor’ev, B.A. and Tsvetkov, F.F., Teplomassoobmen: Uchebnoe posobie (Heat and Mass Transfer: A Textbook), Moscow: Mosk. Energ. Inst., 2005.

Download references

ACKNOWLEDGMENTS

The authors thank V.Ya. Rudyak for valuable comments on the heat-transfer coefficient. We thank the reviewer for the comments, the consideration of which prompted us to expand and better present the results of the work.

Funding

The article was prepared in the framework of grant no. RNF-17-79-20 391 (D.Yu. Lenev, sections Model, Temperature Dependence and Influence of cluster size), the Basic Research Program of the National Research University Higher School of Economics (HSE), and with funds for the state support of the leading universities of the Russian Federation, “5-100” (G.E. Norman, sections Introduction, Calculation method and Heat coefficient).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Lenev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenev, D.Y., Norman, G.E. Molecular Modeling of the Thermal Accommodation of Argon Atoms on Clusters of Iron Atoms. High Temp 57, 490–497 (2019). https://doi.org/10.1134/S0018151X19040151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X19040151

Navigation