Skip to main content
Log in

Strata formation at fast electrical explosion of cylindrical conductors

  • Plasma Investigations
  • Published:
High Temperature Aims and scope

Abstract

The process of electrical explosion of aluminum and tungsten wires at current densities above 108 A/cm2 (the fast electrical explosion regime) is investigated. Within the frame of 2D magnetohydrodynamic calculations based on the Particle-in-Cell technique with realistic equations of state of the metals, the processes of strata formation in the plasma are considered. In the fast electrical explosion regime, strata formation is shown to take place due to the overheat instability. The strata occurrence is caused by the character of the conductivity change near the critical point of the liquid-vapor phase transition, that is, by metal conductivity decrease with a temperature increase and a density decrease. To provoke strata formation, the energy deposited into the wire substance should be of about the sublimation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleksandrov, V.V., Branitskii, A.V., Volkov, G.S., Grabovskii, E.V., Zurin, M.V., Nedoseev, S.L., Oleinik, G.M., Samokhin, A.A., Sasorov, P.V., Smirnov, V.P., Fedulov, M.V., and Frolov, I.N., Plasma Phys. Rep., 2001, vol. 27, no. 2, p. 89.

    Article  ADS  Google Scholar 

  2. Volkov, G.S., Grabovskii, E.V., Mitrofanov, K.N., and Oleinik, G.M., Plasma Phys. Rep., 2004, vol. 30, no. 2, p. 99.

    Article  ADS  Google Scholar 

  3. Spielman, R.B., Deeney, C., Chandler, G.A., Douglas, M.R., Fehl, D.L., Matzen, M.K., McDaniel, D.H., Nash, T.J., Porter, J.L., Sanford, T.W.L., Seamen, J.F., Stygar, W.A. Struve, K.W., Breeze, S.P., McGurn, J.S., Torres, J.A., Zagar, D.M., Gilliland, T.L., Jobe, D.O., McKenney, J.L., Mock, R.C., Vargas, M., Wagoner, T., and Peterson, D.L., Phys. Plasmas, 1998, vol. 5, no. 5, p. 2105.

    Article  ADS  Google Scholar 

  4. Sinars, D.B., Shelkovenko, T.A., Pikuz, S.A., Hu Min, Romanova, V.M., Chandler, K.M., Greenly, J.B., Hammer, D.A., and Kusse, B.R., Phys. Plasmas, 2000, vol. 7, no. 2, p. 429.

    Article  ADS  Google Scholar 

  5. Sinars, D.B., Hu, M., Chandler, K.M., Shelkovenko, T.A., Pikuz, S.A., Greenly, J.B., Hammer, D.A., and Kusse, B.R., Phys. Plasmas, 2001, vol. 8, no. 1, p. 216.

    Article  ADS  Google Scholar 

  6. Sarkisov, G.S., Rosental, S.E., Struve, K.W., McDaniel, D.H., Waisman, E.M., and Sasorov, P.V., in Dense Z-Pinches, Davis, J., Deeney, C., and Pereira, N.R., Eds., New York: American Institute of Physics, 2002, p. 213.

    Google Scholar 

  7. Rousskikh, A.G., Oreshkin, V.I., Chaikovsky, S.A., Labetskaya, N.A., Shishlov, A.V., Beilis, I.I., and Baksht, R.B., Phys. Plasmas, 2008, vol. 15, no. 10, p. 102706.

    Article  ADS  Google Scholar 

  8. Exploding Wires, Chace, W.G. and Moor, H.K., Eds., New York: Plenum, 1959–1968, vols. 1–4.

    Google Scholar 

  9. Abramova, K.B., Zlatin, N.A., and Peregud, B.P., Sov. Phys. JETP, 1975, vol. 42, no. 6, p. 1019.

    ADS  Google Scholar 

  10. Fansler, F.S. and Shear, D.D., in Exploding Wires, Chace, W.G. and Moor, H.K., Eds., New York: Plenum, 1968, vol. 4, p. 185.

    Google Scholar 

  11. Valuev, A.A., Dikhter, I.Ya., and Zeigarnik, V.A., Sov. Phys. Tech. Phys., 1978, vol. 23, no. 10, p. 1190.

    Google Scholar 

  12. Oreshkin, V.I., Phys. Plasmas, 2008, vol. 15, no. 9, p. 092103.

    Article  ADS  Google Scholar 

  13. Braginsky, S.I., in Reviews of Plasma Physics, Leontovich, M.A., Ed., New York: Consultants Bureau, 1965, vol. 1, p. 205.

    Google Scholar 

  14. Kadomtsev, B.B., in Reviews of Plasma Physics, Leontovich, M.A., Ed., New York: Consultants Bureau, 1966, vol. 2, p. 153.

    Google Scholar 

  15. Raizer, Yu.P., Gas Discharge Physics, Berlin: Springer, 1997.

    Google Scholar 

  16. Oreshkin, V.I., Baksht, R.B., Ratakhin, N.A., Shishlov, A.V., Khishchenko, K.V., Levashov, P.R., and Beilis, I.I., Phys. Plasmas, 2004, vol. 11, no. 10, p. 4771.

    Article  ADS  Google Scholar 

  17. Chace, W.G. and Levine, M.A., J. Appl. Phys., 1960, vol. 31, no. 7, p. 1298.

    Article  ADS  Google Scholar 

  18. Mesyats, G.A., Impul’snaya energetika i elektronika (Pulsed Power Engineering and Electronics), Moscow: Nauka, 2004.

    Google Scholar 

  19. Vitkovitsky, I.M., High Power Switching, Amsterdam: Van Nostrand Reinhold, 1987.

    Google Scholar 

  20. Tkachenko, S.I., Khishchenko, K.V., Vorob’ev, V.S., Levashov, P.R., Lomonosov, I.V., and Fortov, V.E., High Temp., 2001, vol. 39, no. 5, p. 674.

    Article  Google Scholar 

  21. Khishchenko, K.V., Tkachenko, S.I., Levashov, P.R., Lomonosov, I.V., and Vorob’ev, V.S., Int. J. Thermophys., 2002, vol. 23, no. 5, p. 1359.

    Article  Google Scholar 

  22. Vorob’ev, V.S., Malyshenko, S.P., and Tkachenko, S.I., High Temp., 2005, vol. 43, no. 6, p. 908.

    Article  Google Scholar 

  23. Vorob’ev, V.S. and Malyshenko, S.P., High Temp., 2010, vol. 48, no. 6, p. 957.

    Article  Google Scholar 

  24. Sedoi, V.S., Mesyats, G.A., Oreshkin, V.I., Valevich, V.V., and Chemezova, L.I., IEEE Trans. Plasma Sci., 1999, vol. 27, no. 4, p. 845.

    Article  ADS  Google Scholar 

  25. Lebedev, S.V. and Savvatimskii, A.I., Sov. Phys. Tech. Phys., 1984, vol. 29, no. 9, p. 1045.

    Google Scholar 

  26. Oreshkin, V.I., Barengol’ts, S.A., and Chaikovsky, S.A., Tech. Phys., 2007, vol. 52, no. 5, p. 642.

    Article  Google Scholar 

  27. Valuev, A.A. and Norman, G.E., JETP, 1999, vol. 89, no. 6, p. 1180.

    Article  ADS  Google Scholar 

  28. Krivoguz, M.N., Norman, G.E., Stegailov, V.V., and Valuev, A.A., J. Phys. A: Math. Gen., 2003, vol. 36, no. 22, p. 6041.

    Article  ADS  Google Scholar 

  29. Stegailov, V.V., in Tezisy Dokladov 6-go Rossiiskogo Simpoziuma “Problemy Fiziki Ul’trakorotkikh Protsessov v Sil’noneravnovesnykh Sredakh,” Novyi Afon, 2008 (Abstracts of Papers of the Sixth Russian Symposium “Problems in the Physics of Ultrashort Processes in Strongly Nonequilibrium Media,” Novyi Afon, Gudauty region, Abkhazia, July 23–August 1, 2008, Novyi Afon, 2008, p. 17.

  30. Landau, L.D. and Lifshitz, E.M., Electrodynamics of Continuous Media, in Course of Theoretical Physics, Oxford: Butterworth-Heinemann, 1984, vol. 8.

    Google Scholar 

  31. Lebedev, S.V. and Savvatimskii, A.I., Sov. Phys.-Usp., 1984, vol. 27, no. 10, p. 749.

    Article  ADS  Google Scholar 

  32. Burtsev, V.A., Kalinin, N.V., and Luchinskii, A.V., Elektricheskii vzryv provodnikov i ego primenenie v elektrofizicheskikh ustanovkakh (Electric Explosion of Conductors and Its Applications in Electrophysical Installations), Moscow: Energoatomizdat, 1990.

    Google Scholar 

  33. Harlow, F.H., in Methods in Computational Physics: Fundamental Methods in Hydrodynamics, Alder, B., Fernbach, S., and Rotenberg, M., Eds., New York: Academic, 1964, vol. 3, p. 316.

    Google Scholar 

  34. Khishchenko, K.V. and Fortov, V.E., in Fizika ekstremal’nykh sostoyanii veshchestva-2002 (Physics of Extreme States of Matter-2002), Fortov, V.E., Ed., Chernogolovka (Moscow oblast, Russia): Institute of Problems of Chemical Physics, Russian Academy of Sciences, 2002, p. 68.

    Google Scholar 

  35. Khishchenko, K.V., in Fizika ekstremal’nykh sostoyanii veshchestva-2005 (Physics of Extreme States of Matter-2005), Fortov, V.E., Ed., Chernogolovka (Moscow oblast, Russia): Institute of Problems of Chemical Physics, Russian Academy of Sciences, 2005, p. 170.

    Google Scholar 

  36. Levashov, P.R. and Khishchenko, K.V., in Fizika ekstremal’nykh sostoyanii veshchestva-2004 (Physics of Extreme States of Matter-2004), Fortov, V.E., Ed., Chernogolovka (Moscow oblast, Russia): Institute of Problems of Chemical Physics, Russian Academy of Sciences, 2004, p. 53.

    Google Scholar 

  37. Knoepfel, H., Pulsed High Magnetic Fields: Physical Effects and Generation Methods Concerning Pulsed Fields Up to the Megaoersted Level, Amsterdam: North-Holland, 1970.

    Google Scholar 

  38. Kuskova, N.I., Tkachenko, S.I., and Koval, S.V., J. Phys.: Condens. Matter, 1997, vol. 9, p. 6175.

    Article  ADS  Google Scholar 

  39. Oreshkin, V.I., Baksht, R.B., Labetsky, A.Yu., Rousskikh, A.G., Shishlov, A.V., Levashov, P.R., Khishchenko, K.V., and Glazyrin, I.V., Tech. Phys., 2004, vol. 49, no. 7, p. 843.

    Article  Google Scholar 

  40. Bakulin, Yu.D., Kuropatenko, V.F., and Luchinskii, A.V., Sov. Phys. Tech. Phys., 1976, vol. 21, no. 9, p. 1144.

    Google Scholar 

  41. Kalitkin, N.N., Teplofiz. Vys. Temp., 1968, vol. 6, no. 5, p. 801.

    Google Scholar 

  42. Rogov, V.S., Teplofiz. Vys. Temp., 1970, vol. 8, no. 4, p. 689.

    Google Scholar 

  43. Kalitkin, N.N., Preprint of the Institute of Applied Mathematics, Academy of Sciences of the Soviet Union, Moscow, 1978, no. 85.

  44. Chapman, S. and Cowling, T.G., The Mathematical Theory of Non-Uniform Gases, Cambridge: Cambridge University Press, 1990, 3rd ed.

    Google Scholar 

  45. Handbook of Physical Quantities, Grigoriev, I.S. and Meilikhov, E.Z., Eds., Boca Raton (Florida, United States): CRC Press, 1997.

    Google Scholar 

  46. Landau, L.D. and Lifshitz, E.M., Statistical Physics: Part 1, in Course of Theoretical Physics, Oxford: Butterworth-Heinemann, 1996, vol. 5.

    Google Scholar 

  47. Desjarlais, M.P., Contrib. Plasma Phys., 2001, vol. 41, nos. 2–3, p. 267.

    Article  ADS  Google Scholar 

  48. Anisimov, S.I., Imas, Ya.A., Romanov, G.S., and Khodyko, Yu.V., Action of High-Power Radiation on Metals, Springfield (Virginia, United States): Consultants Bureau, 1971.

    Google Scholar 

  49. Vorob’ev, V.S. and Rakhel’, A.D., High Temp., 1990, vol. 28, no. 1, p. 17.

    Google Scholar 

  50. Rakhel’, A.D., Tech. Phys., 1995, vol. 40, no. 12, p. 1218.

    Google Scholar 

  51. Vorob’ev, V.S., Tech. Phys., 1996, vol. 41, no. 1, p. 17.

    Google Scholar 

  52. Pikuz, S.A., Shelkovenko, T.A., Sinars, D.B., Greenly, J.B., Dimant, Y.S., and Hammer, D.A., Phys. Rev. Lett., 1999, vol. 83, no. 21, p. 4313.

    Article  ADS  Google Scholar 

  53. Rousskikh, A.G., Baksht, R.B., Oreshkin, V.I., and Shishlov, A.V., in Dense Z-Pinches, Davis, J., Deeney, C., and Pereira, N.R., Eds., New York: American Institute of Physics, 2002, p. 217.

    Google Scholar 

  54. Sarkisov, G.S., Struve, K.W., and McDaniel, D.H., Phys. Plasmas, 2004, vol. 11, no. 10, p. 4573.

    Article  ADS  Google Scholar 

  55. Fractography and Atlas of Fractograph, in Metals Handbook, Metals Park (Ohio, United States): American Society for Metals, 1974, vol. 9.

  56. Mesyats, G.A., Ektony v vakuumnom razryade: proboi, iskra, duga (Electrons in Vacuum Discharge: Breakdown, Spark, and Arc), Moscow: Nauka, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.I. Oreshkin, K.V. Khishchenko, P.R. Levashov, A.G. Rousskikh, S.A. Chaikovskii, 2012, published in Teplofizika Vysokikh Temperatur, 2012, Vol. 50, No. 5, pp. 625–637.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oreshkin, V.I., Khishchenko, K.V., Levashov, P.R. et al. Strata formation at fast electrical explosion of cylindrical conductors. High Temp 50, 584–595 (2012). https://doi.org/10.1134/S0018151X12050148

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X12050148

Keywords

Navigation