Skip to main content
Log in

Computation of hypersonic flow and radiation of viscous chemically reacting gas in a channel modeling a section of a scramjet

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

This work is devoted to a consideration of flow and combustion of a hydrogen-air mixture in a channel modeling a section of a supersonic combustion ramjet (scramjet). Fields of concentrations, pressure, and temperature are obtained. Based on them, the thermal radiation of gas within a scramjet combustor is computed. The density of the radiative heat flux to the chamber wall is computed by two methods, i.e., in a P1 approximation of the spherical harmonics method and in an approximation of the plane layer. It has been shown that the radiative heat flux contribute significantly to the total heating of the jet wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berry, S., Daryabeigi, K., Wurster, K., and Bittner, R., J. Spacecr. Rockets, 2010, vol. 47, no. 6, p. 922.

    Article  Google Scholar 

  2. Rabota vedushchikh aviadvigatelestroitel’nykh kompanii po sozdaniyu perspektivnykh aviatsionnykh dvigatelei (Analiticheskii obzor) (Works of the Leading Aircraft Engine-Building Companies on the Development of State-of-the-Art Aviation Engines (An Analytical Review)), Skibin, V.A. and Solonin, V.I., Eds., Moscow: Baranov Central Institute of Aviation Motor Development, 2004.

    Google Scholar 

  3. Mura, A. and Izard, J.-F., J. Propul. Power, 2010, vol. 26, no. 4, p. 858.

    Article  Google Scholar 

  4. Lin, K.C., Jackson, K., Behdadnia, R., Jackson, T., Ma, F., and Yang, V., J. Propul. Power, 2010, vol. 26, no. 4, p. 1161.

    Article  Google Scholar 

  5. Ogawa, H., Grainger, A.L., and Boyce, R.R., J. Propul. Power, 2010, vol. 26, no. 6, p. 1247.

    Article  Google Scholar 

  6. O’Brien, T.F., Starkey, R.P., and Lewis, M.J., J. Propul. Power, 2001, vol. 17, no. 6, p. 1366.

    Article  Google Scholar 

  7. Guoskov, O.V., Kopchenov, V.I., Lomkov, K.E., Vinogradov, V.A., and Waltrup, P.J., J. Propul. Power, 2001, vol. 17, no. 6, p. 1162.

    Article  Google Scholar 

  8. Link, T. and Koschel, W.W., J. Propul. Power, 2001, vol. 17, no. 6, p. 1353.

    Article  Google Scholar 

  9. Volkov, K.N. and Emel’yanov, V.N., Modelirovanie krupnykh vikhrei v raschetakh turbulentnykh techenii (Large-Eddy Simulation in Calculations of Turbulent Flows), Moscow: Fizmatlit, 2008.

    Google Scholar 

  10. Gus’kov, O.N., Kopchenov, V.I., Lipatov, I.I., Ostras’, V.N., and Starukhin, V.P., Protsessy tormozheniya sverkhzvukovykh techenii v kanalakh (Processes of Retardation of Supersonic Flows in Channels), Moscow: Fizmatlit, 2008.

    Google Scholar 

  11. Nelson, H.F., J. Thermophys. Heat Transfer, 1997, vol. 11, no. 1, p. 59.

    Article  Google Scholar 

  12. Liu, J. and Tiwari, S.N., AIAA Pap., 1994, p. 94–2092.

  13. Kotov, D.V. and Surzhikov, S.T., Vychisl. Mekh. Sploshnoi Sredy, 2011, vol. 4, no. 1, p. 36.

    Google Scholar 

  14. Rakitskii, Yu.V., Ustinov, S.M., and Chernorutskii, I.T., Chislennye metody resheniya zhestkikh sistem (Numerical Methods for Solution of Stiff Systems), Moscow: Nauka, 1979.

    Google Scholar 

  15. Gurvich, A.V., Khachkuruzov, G.A., Medvedev, V.A., Veits, I.V., and Bergman, G.A., Termodinamicheskie svoistva individual’nykh veshchestv (Thermodynamic Properties of Individual Substances), Moscow: Nauka, 1978.

    Google Scholar 

  16. Ginzburg, I.P., Trenie i teploperedacha pri dvizhenii v smesi gaza (Friction and Heat Transfer during the Motion in a Gaseous Mixture), Leningrad: Leningrad State University, 1975.

    Google Scholar 

  17. Bird, R.B., Steawart, W.E., and Lightfoot, E.N., Transport Phenomena, New York: Wiley, 1960.

    Google Scholar 

  18. Evans, J.S. and Schexnayder, Ch.J., AIAA J., 1980, vol. 18, no. 2, p. 188.

    Article  ADS  Google Scholar 

  19. Surzhikov, S.T., Teplovoe izluchenie gazov i plazmy (Thermal Radiation of Gases and Plasmas), Moscow: Bauman Moscow State Technical University, 2004.

    Google Scholar 

  20. Ludwig, C.B., Malkmus, W., Walker, J., Slack, M., and Reed, R., AIAA Pap., 1981, p. 81–1051.

  21. Khmelinin, B.A. and Plastinin, Yu.A., Tr. TsAGI, 1975, no. 1656, p. 102.

  22. Surzhikov, S.T., Opticheskie svoistva gazov i plazmy (Optical Properties of Gases and Plasmas), Moscow: Bauman Moscow State Technical University, 2004.

    Google Scholar 

  23. Surzhikov, S.T., AIAA Pap., 2002, p. 2002–3324.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © D.V. Kotov, S.T. Surzhikov, 2012, published in Teplofizika Vysokikh Temperatur, 2012, Vol. 50, No. 1, pp. 126–136.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotov, D.V., Surzhikov, S.T. Computation of hypersonic flow and radiation of viscous chemically reacting gas in a channel modeling a section of a scramjet. High Temp 50, 120–130 (2012). https://doi.org/10.1134/S0018151X12010099

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X12010099

Keywords