Skip to main content
Log in

The Rate Constant of Electron Impact Dissociation of Carbon Dioxide (Analytical Review of Calculation Methods and Known Results)

  • REVIEW
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

An analytical review has been made of calculation methods and available results of studies on the energy spectrum of electrons in gas discharges in neat carbon dioxide and CO2-containing mixtures. On the basis of a detailed analysis and generalization of calculation results obtained using various models for determining the electron energy spectrum, the rate constant of electron impact dissociation of CO2 in atmospheric-pressure direct-current gas discharge has been found. The range of the reduced electric field (from 55 to 100 Td) in which the predominant mechanism of CO2 decomposition is electron collisions with CO2 molecules has been established. An expression has been obtained for calculating the rate constant of electron impact dissociation of CO2 depending on the reduced electric field. It has been shown that despite the same method of forming a self-consistent set of cross sections, identical values of adjustable parameters can be obtained for different sets of cross sections. This leads to the ambiguity of calculated values for the rate constants of electron impact-induced processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Fridman, A., Plasma Chemistry, Cambridge: Cambridge University Press, 2008.

    Book  Google Scholar 

  2. Shekhter, A.B., Khimicheskie reaktsii v elektricheskom razryade (Chemical Reactions in Electric Discharge), Leningrad: ONTI, 1935.

  3. Slovetsky, D.I, Mekhanizmy khimicheskikh reaktsii v neravnovesnoi plazme (Mechanisms of Chemical Reactions in Nonequilibrium Plasma), Moscow: Nauka, 1980.

  4. Rusanov, V.D., Fridman, A.L., and Sholin, G.V., Usp. Fiz. Nauk, 1981, vol. 134, no. 2, p.185.

    Article  CAS  Google Scholar 

  5. Rusanov, V.D. and Fridman, A.A., Fizika khimicheski aktivnoi plazmy (Physics of Chemically Active Plasma), Moscow: Nauka, 1984.

  6. Kozák, T. and Bogaerts, A., Plasma Sources Sci. Technol., 2014, vol. 23, p. 045004.

    Article  Google Scholar 

  7. Grofulović, M., Luis, L.A., and Guerra, V., J. Phys. D: Appl. Phys., 2016, vol. 49, p. 395207.

    Article  Google Scholar 

  8. Pietanza, L.D., Colonna, C., and Capitelli, M., Phys. Plasmas, 2020, vol. 27, p. 023513.

    Article  CAS  Google Scholar 

  9. Polak, L. and Slovetsky, D., Int. J. Radiat. Phys. Chem., 1976, vol. 8, p. 257.

    Article  CAS  Google Scholar 

  10. Rabalais, J.W., McDonald, J.M., Scherr, V., and McGlynn, S.P., Chem. Rev., 1971, vol. 71, p. 73.

    Article  Google Scholar 

  11. Aleksandrov, N.L. and Son, E.E., Khim. Plazmy, 1978, no. 5, p. 3.

  12. Smith, K. and Thompson, R., Computer Modeling of Gas Lasers, New York: Plenum, 1978.

    Book  Google Scholar 

  13. Bekefi, G., Principles of Laser Plasmas, New York: Wiley–Interscience, 1976.

    Google Scholar 

  14. Itikawa, Y., J. Phys. Chem. Ref. Data, 2002, vol. 31, p. 749.

    Article  CAS  Google Scholar 

  15. Hake, R.D. and Phelps, A.V., Scientific Paper 66-1E2-GASES-P1, Pittsburgh: Westinghouse Research Laboratory, 1966.

    Google Scholar 

  16. Hake, R.D. and Phelps, A.V., Phys. Rev., 1967, vol. 158, no. 1, p. 70.

    Article  CAS  Google Scholar 

  17. Nighan, W.L. and Bennet, J.I., Appl. Phys. Lett., 1969, vol. 14, no. 8, p. 240.

    Article  CAS  Google Scholar 

  18. Phe1ps, A.V., Bu11. Am. Phys. Soc., 1970, vol. 15, p. 423.

  19. Nighan, W.L., Phys. Rev. A, 1970, vol. 2, no. 5, p. 1989.

    Article  Google Scholar 

  20. Sawada, T., Strickland, D., and Green, A.E.S., J. Geophys. Res., 1972, vol. 77, no. 25, p. 4812.

    Article  CAS  Google Scholar 

  21. Lowke, J.J., Phelps, A.V., and Irwin, B.W., J. Appl. Phys., 1973, vol. 44, p. 4664.

    Article  CAS  Google Scholar 

  22. Judd, O.P., J. Appl. Phys., 1974, vol. 45, no. 10, p. 4572.

    Article  CAS  Google Scholar 

  23. Allis, W.P. and Haus, H.A., J. Appl. Phys., 1974, vol. 45, p. 781.

    Article  CAS  Google Scholar 

  24. Lobanov, A.N. and Suchkov, A.F., Kvant. Elektron., 1974, vol. 1, no. 7, p. 1527.

    CAS  Google Scholar 

  25. Ivanov, Yu.A., Lebedev, Yu.A., and Polak, L.S., Fiz. Plazmy, 1976, vol. 2, no. 5, p. 871.

    CAS  Google Scholar 

  26. Cherrington, B.E., Gaseous Electronics and Gas Lasers, Oxford: Pergamon, 1979.

    Google Scholar 

  27. Pivovar, V.A. and Sidorova, T.D., Zh. Tekh. Fiz., 1979, vol. 49, no. 7, p. 1425.

    CAS  Google Scholar 

  28. Kochetov, I.V., Pevgov, V.G., Polak, L.S., and Slovetsky, D.I., Plazmokhimicheskie protsessy (Plasma-Chemical Processes), Polak, L.S., Ed., Moscow: Institut Neftekhimicheskogo Sinteza AN SSSR, 1979, p. 4.

    Google Scholar 

  29. Kochetov, I.V., Naumov, V.G., Pevgov, V.G., and Shashkov, V.M., Kvant. Elektron., 1979, vol. 6, no. 7, p. 1446.

    CAS  Google Scholar 

  30. Karulina, E.V. and Lebedev, Yu.A., Fiz. Plazmy, 1988, vol. 14, no. 10, p. 871.

    Google Scholar 

  31. Pagnamenta, A., Kimura, M., Inokuti, M., and Kowari, K., J. Chem. Phys., 1988, vol. 89, p. 6220.

    Article  CAS  Google Scholar 

  32. Morgan, W.L. and Penetrante, B.M., Comput. Phys. Commun., 1990, vol. 58, p. 127.

    Article  CAS  Google Scholar 

  33. Ledig, T. and Schrdder, B., J. Phys. D: Appl. Phys., 1990, vol. 23, p. 1624.

    Article  CAS  Google Scholar 

  34. Colonna, G., Capitelli, M., De Benedictis, S., et al., Contrib. Plasma Phys., 1991, vol. 31, no. 6, p. 575.

    Article  CAS  Google Scholar 

  35. Konovalov, V.P., Fiz. Plazmy, 1992, vol. 18, no. 11, p. 1461.

    CAS  Google Scholar 

  36. Makhlouf, M., Sazhin, S., Leys, C., et al., Infrared Phys., 1993, vol. 34, no. 5, p. 525.

    Article  CAS  Google Scholar 

  37. Grudszus, S. and Marz, M., J. Phys. D: Appl. Phys., 1993, vol. 26, no.11, p. 1980.

    Article  Google Scholar 

  38. Gordeev, O.A. and Khmara, D.V., Mat. Model., 2009, vol. 13, no. 9, p. 3.

    Google Scholar 

  39. Biagi Database. www.lxcat.net. Assessed June 7, 2020.

  40. Phelps Database. www.lxcat.net. Assessed June 17, 2020.

  41. SIGLO Database. www.lxcat.net. Assessed July 7, 2020.

  42. TRINITI Database. www.lxcat.net. Assessed on June 13, 2020.

  43. IST-Lisbon Database. www.lxcat.net. Assessed June 19, 2020.

  44. Corvin, K.K. and Corrigan, S.J.B., J. Chem. Phys., 1969, vol. 50, p. 2570.

    Article  CAS  Google Scholar 

  45. Cosby, P.C. and Helm, H., Technical Report WL-TR-93-2004, Dayton, OH: Air Force Materiel Command, Wright Patterson AFB, 1992, pp. 45433−7650.

  46. Le Clair, L.R. and McConkey, J.W., J. Phys. B: At. Mol. Opt. Phys., 1994, vol. 27, p. 4039.

    Article  CAS  Google Scholar 

  47. Yousfi, E.M., Azzi, N., Segur, P., et al., Informal Report, Toulouse: Centre de Physique Atomique, 1987, p. 1.

    Google Scholar 

  48. Kieffer, L.J., Joint Institute for Laboratory Astrophysics Information Centre, Rep. 13, September 1973.

  49. Kieffer, L.J., NSRDS-NBS 73, Colorado: University of Colorado Boulder, 1973.

    Google Scholar 

  50. Huxley, L. and Crompton, R., The Diffusion and Drift of Electrons in Gases, New York: Wiley, 1974.

    Google Scholar 

  51. Itikawa, Y., At. Data, 1974, vol. 14, p. 1.

    Article  CAS  Google Scholar 

  52. Ramsauer, C., Ann. Phys., 1927, vol. 83, p. 1129.

  53. Morrison, M.A. and Lane, N.F., Phys. Rev. A, 1977, vol. 16, p. 975.

    Article  CAS  Google Scholar 

  54. Karlov, N.V. et. al., Preprint of Physical Inst. Im. Lebedeva, USSR Acad. Sci., Moscow, 1976, no. 91.

  55. http:www.kinema.com/download.htm (W. L. Morgan’s compilation).

  56. Orient, O.J. and Srivastava, S.K., Chem. Phys. Lett., 1983, vol. 96, no. 6, p. 681.

    Article  CAS  Google Scholar 

  57. Spence, D. and Schulz, G.J., Phys. Rev., 1969, vol. 188, p. 280.

    Article  CAS  Google Scholar 

  58. Rapp, D. and Briglia, D.D., J. Chem. Phys., 1965, vol. 43, p. 1480.

    Article  CAS  Google Scholar 

  59. Massey, H.S.W., Negative Ions, Cambridge: Cambridge Univ. Press, 1976.

    Google Scholar 

  60. Schultz, G. J., Phys. Rev., 1962, vol. 128, p. 178.

    Article  Google Scholar 

  61. Blauer, J.A. and Nickerson, G.R., Technical Report no. 0455177, Ultrasystems, Inc., 1973.

  62. Pevgov, V.G., Cand. Sci. (Phys.–Math.) Dissertation, Moscow: Moscow Inst. of Physical Engineering, 1977.

  63. Bruche, E., Ann. Phys., 1927, vol. 83, p. 1065.

    Article  CAS  Google Scholar 

  64. Celiberto, R., Laporta, V., Laricchiuta, A., et al., Open Plasma Phys. J., 2014, vol. 7, p. 33.

    CAS  Google Scholar 

  65. Celiberto, R., Armenise, I., Cacciatore, M., et al., Plasma Sources Sci. Technol., 2016, vol. 26, p. 033004.

    Article  Google Scholar 

  66. Rapp, D. and Englander-Golden, P., J. Chem. Phys., 1965, vol. 43, no. 5, p. 1464.

    Article  CAS  Google Scholar 

  67. Rapp, D., Englander-Golden, P., and Briglia, D.D., J. Chem. Phys., 1965, vol. 42, p. 4081.

    Article  CAS  Google Scholar 

  68. Crowe, A. and McConkey, J.W., J. Phys. B: At. Mol. Opt. Phys., 1974, vol. 7, p. 349.

    Article  CAS  Google Scholar 

  69. Gallagher, J.W. et al., J. Phys. Chem. Ref. Data, 1988, vol. 17, no. 1, p. 9.

    Article  CAS  Google Scholar 

  70. Avakyan, S.V., Il’in, R.N., Lavrov, V.M., and Ogurtsov, G.N., Secheniya protsessov ionizatsii i vozbuzhdeniya UF izlucheniya pri stolknoveniyakh elektronov, ionov i fotonov s atomami i molekulami atmosfernykh gazov. Spravochnik (Cross Sections of Ionization and Excitation of UV Emission in Collisions of Electrons, Ions, and Photons with Atoms and Molecules of Atmospheric Gases: A Reference Book), St-Petersburg: GOI, 2000.

  71. Beuthe, T.G. and Chang, J.S., Jpn. J. Appl. Phys., 1997, vol. 36, p. 4997.

    Article  CAS  Google Scholar 

  72. Gurvich, L.V., Veits, I.V., Medvedev, V.A., et al., Termodinamicheskie svoistva individual’nykh veshchestv. Spravochnoe izdanie v 4-kh tomakh (Thermodynamic Properties of Individual Substances, in 4 volumes), Moscow: Nauka, 1979, vol. II, book 1.

  73. Winter, N.W., Bender, C.F., and Goddard, W.A., Chem. Phys. Lett., 1973, vol. 20, p. 489.

    Article  CAS  Google Scholar 

  74. Rabalais, J.W., McDonald, J.M., Scherr, V., et al., Chem. Rev., 1971, vol. 71, p. 73.

    Article  Google Scholar 

  75. Benedict, W.S., Planetary Atmospheres: IAU Symposium No. 40 Held in Marfa, Texas, U.S.A., October 26–31, 1969, Sagan, C., Owen, T.C., and Smith, H.J., Eds., Dordrecht: Reidel, 1971, p. 43.

  76. Dixon, R.N., Disc. Faraday Soc., 1963, vol. 35, p. 105.

    Article  Google Scholar 

  77. Dixon, R.N., Proc. R. Soc. London A, 1963, vol. 275, p. 431.

    Article  CAS  Google Scholar 

  78. Naumov, V.G., et al., Kvant. Electron., 1979, vol. 6, p. 1446.

    Google Scholar 

  79. Nakatsuji, H., Chem. Phys., 1983, vol. 75, p. 425.

    Article  CAS  Google Scholar 

  80. Chan, W.F., Cooper, G., and Brion, C.E., Chem. Phys., 1993, vol. 178, p. 401.

    Article  CAS  Google Scholar 

  81. Lee, C.-H., Winstead, C., and McKoy, V., J. Chem. Phys., 1999, vol. 111, p. 5056.

    Article  CAS  Google Scholar 

  82. Pietanza, L.D., Colonna, G., D’Ammando, G., et al., Phys. Plasmas, 2016, vol. 23, p. 013515.

    Article  Google Scholar 

  83. Wiegand, W.J., Fowler, M.C., and Benda, J.A., Appl. Phys. Lett., 1970, vol. 16, no. 6, p. 237.

    Article  CAS  Google Scholar 

  84. Nighan W., Appl. Phys. Lett., 1969, vol. 15, p. 355.

    Article  CAS  Google Scholar 

  85. Green, M.A., Teubner, P.J.O., Campbell, L., et al., J. Phys. B: At. Mol. Opt. Phys., 2002, vol. 35, p. 567.

    Article  CAS  Google Scholar 

  86. Herzberg, G., Molecular Spectra and Molecular Structure, vol. III: Electronic Spectra and Electronic Structure of Polyatomic Molecules, New York: Van Nostrand, 1966.

    Google Scholar 

  87. El’yashevich, M.A., Atomnaya i molekulyarnaya spektroskopiya (Atomic and Molecular Spectroscopy), Moscow: Editorial URSS, 2001.

  88. Ochkin, V.N., Spectroscopy of Low Temperature Plasma, Weinheim: Wiley–VCH, 2009.

    Book  Google Scholar 

  89. Suzuki, I., J. Mol. Spectrosc., 1968, vol. 25.P. 479.

    Article  Google Scholar 

  90. Raizer, Yu.P., Gas Discharge Physics, Berlin: Springer, 1991.

    Book  Google Scholar 

  91. Shkarofsky, I.P., Johnston, T.W., and Bachynski, M.P., The Particle Kinetics of Plasmas, Reading, MA: Addison–Wesley, 1966.

    Google Scholar 

  92. Kudryavtsev, A.A., Smirnov, A.S., and Tsendin, L.D., Fizika tleyushchego razryada. Uchebnoe posobie (Glow Discharge Physics: Textbook), St. Petersburg: Lan’, 2010.

  93. Hosoya, T., Sakai, Y., and Tagashira, H., Papers of Tech. Grp. Electrical Discharges (IEE, Japan), 1974, ED-74-36.

  94. Akimoto, H., Taniguchi, T., Sakai, Y., and Tagashira, H., Papers of Tech. Grp. Electrical Discharges (IEE, Japan), 1976, ED-76-44.

  95. Taniguchi, T., Tagashira, H., and Sakai, Y., J. Phys. D: Appl. Phys., 1977, vol. 10, p. 2301.

    Article  CAS  Google Scholar 

  96. Braglia, G.L., Contrib. Plasma Phys., 1985, vol. 25, no. 6, p. 567.

    Google Scholar 

  97. Volkova, E.A., Ivanov, V.V., Melkumova, E.Yu., et al., Fiz. Plazmy, 1992, vol. 18, no. 7, p. 911.

    Google Scholar 

  98. White, R.D., Robson, R.E., Schmidt. B., et al., J. Phys. D: Appl. Phys., 2003, vol. 36, p. 3125.

    Article  CAS  Google Scholar 

  99. Smirnov, B.M., Plasma Processes and Plasma Kinetics, Weinheim: Wiley–VCH, 2007.

    Book  Google Scholar 

  100. Biberman, L.M., Vorob’ev, V.S., and Yakubov, I.T., Kinetika neravnovesnoi nizkotemperaturnoi plazmy (Kinetics of Nonequilibrium Low-Temperature Plasma), Moscow: Nauka, 1982.

  101. Fiziko-khimicheskie protsessy v gazovoi dinamike. T. 1. Dinamika fiziko-khimicheskikh protsessy v gaze i plazme (Handbook of Physicochemical Processes in Gas Dynamics, vol. 1: Dynamics of Physicochemical Processes in Gas and Plasma), Chernyi, G.G. and Losev, S.A., Eds., Moscow: Nauchno-izdatel’skii Tsentr Mekhaniki, 2007, 2nd ed.

  102. Spravochnik konstant elementarnykh protsessov s uchastiem atomov, ionov, elektronov, fotonov (Handbook of Constants of Elementary Processes Involving Atoms, Ions, Electrons, and Photons), Zhiglinskii, A.G., Ed., St. Petersburg: Izd. Sankt-Peterburgskogo Univ., 1994.

    Google Scholar 

  103. Townsend, J.S., Philos. Mag., 1902, vol. 3, p. 557.

    Article  Google Scholar 

  104. Hurst, H.E., Philos. Mag., 1906, vol. 11, p. 535.

    Article  CAS  Google Scholar 

  105. Skinker, M.F., Philos. Mag., 1922, vol. 44, p. 994.

    Article  Google Scholar 

  106. Bailey, V.A. and Rudd, J.B., Philos. Mag., Ser. 7, 1932, vol. 14, p. 1033.

    Article  CAS  Google Scholar 

  107. Bortner, T.E., Hurst, G.S., and Stone, W.G., Rev. Sci. Instrum., 1957, vol. 28, p. 103.

    Article  CAS  Google Scholar 

  108. Frommhold, L., Z. Phys., 1960, vol. 160, p. 554.

    Article  CAS  Google Scholar 

  109. Bhalla, M.S. and Craggs, J.D., Proc. Phys. Soc. London, 1960, vol. 76, p. 369.

    Article  CAS  Google Scholar 

  110. Schlumbohm, H., Z. Phys., 1962, vol. 166, p. 192.

    Article  Google Scholar 

  111. Warren, R.W. and Parker, J.H., Phys. Rev., 1962, vol. 128, p. 2661.

    Article  CAS  Google Scholar 

  112. Rees, J.A., Austr. J. Phys., 1962, vol. 17, p. 462.

    Article  Google Scholar 

  113. Pack, J.L., Voshall, R.E., and Phelps, A.V., Phys. Rev., 1962, vol. 127, p. 2084.

    Article  CAS  Google Scholar 

  114. Rees, J.A., Austr. J. Phys., 1964, vol. 17, p. 462.

    Article  CAS  Google Scholar 

  115. Schlumbohm, H., Z. Phys., 1965, vol. 182, p. 317.

    Article  CAS  Google Scholar 

  116. Schlumbohm, H., Z. Phys., 1965, vol. 184, p. 492.

    Article  CAS  Google Scholar 

  117. Elford, M.T., Austr. J. Phys., 1966, vol. 19, p. 629.

    Article  CAS  Google Scholar 

  118. Nakamura, Y., Aust. J. Phys., 1995, vol. 48, p. 357.

    Article  CAS  Google Scholar 

  119. Kalkenings, R., Diplomarbeit, Heidelberg: Ruprecht Karls Universität Heidelberg, 1996.

    Google Scholar 

  120. Haefliger, P. and Franck, C.M., Rev. Sci. Instrum., 2018, vol. 89, no. 2, Article 023114.

    Article  CAS  PubMed  Google Scholar 

  121. Elford, M.T. and Haddad, G.N., Aust. J. Phys., 1980, vol. 33, p. 517.

    Article  CAS  Google Scholar 

  122. Dutton Database. www.lxcat.net. Assessed June 26, 2020.

  123. ETHZ Database. www.lxcat.net. Assessed July 1, 2020.

  124. Heidelberg Database. www.lxcat.net. Assessed July 1, 2020.

  125. LAPLACE Database. www.lxcat.net. Assessed July 1, 2020.

  126. UNAM Database. www.lxcat.net. Assessed July 1, 2020.

  127. Conti, V.J. and Williams, A.W., Contributed Papers of the Eight International Conference on Phenomena in Ionized Gases, Vienna, 27 August–2 September 1967, Vienna: Springer, 1967, p. 23.

  128. Spence, D., Mauer, J.L., and Schulz, G.J., J. Chem. Phys., 1972, vol. 57, p. 5516.

    Article  CAS  Google Scholar 

  129. Boness, M.J.W. and Schulz, G.J., Phys. Rev. Lett., 1968, vol. 21, p. 1031.

    Article  CAS  Google Scholar 

  130. Andrick, A., Danner, D., and Ehrhardt, H., Phys. Lett. A, 1969, vol. 29, p. 346.

    Article  CAS  Google Scholar 

  131. Wigand, W.J., Fowler, M.C., and Benda, J.A., Appl. Phys. Lett., 1970, vol. 16, p. 237.

    Article  Google Scholar 

  132. Shimamura, I., Phys. Rev. A, 1990, vol. 42, p. 1318.

    Article  CAS  PubMed  Google Scholar 

  133. Davies, A.R., Smith, K., and Thomson, B.M., J. Appl. Phys., 1976, vol. 47, p. 2037.

    Article  CAS  Google Scholar 

  134. Wood, O.R., Proc. IEEE, 1974, vol. 62, p. 355.

    Article  CAS  Google Scholar 

  135. Basov, N.G., Belenoe, E.M., Danilychev, V.A., et al., Zh. Eksp. Teor. Fiz., 1973, vol. 64, p. 108.

    CAS  Google Scholar 

  136. Bugaev, S.P., Bychkov, Yu.I., Koval’chuk, B.M., et al., Kvant. Elektron., 1977, vol. 4, p. 897.

    CAS  Google Scholar 

  137. Galaktionov, I.I., Gorelov, V.Yu., and Podmoshenskii, I.V., Kvant. Elektron., 1976, vol. 3, p. 2570.

    CAS  Google Scholar 

  138. Bulos B. R., Phelps A.V., Phys. Rev. A, 1976, vol. 14, no. 2, p. 615.

    Article  CAS  Google Scholar 

  139. Naumov, V.G. and Shashkov, V.M., Kvant. Elektron., 1977, vol. 4, p. 2427.

    CAS  Google Scholar 

  140. Capitelli, M., Gorse, C., Berardini, M., et al., Lett. Nuovo Cimento, 1981, vol. 31, p. 231.

    Article  CAS  Google Scholar 

  141. Inokuti, M., Radial. Res., 1975, vol. 64, p. 6.

    Article  CAS  Google Scholar 

  142. Nikerov, V.A. and Sholin, G.V., Kinetika degradatsionnykh protsessov (Kinetics of Degradation Processes), Moscow: Energoatomizdat, 985.

  143. Konovalov, V.P. and Son, E.E., Khim. Plazmy, 1987, no. 14, p. 194.

  144. Aleksandrov, I. L. and Konchakov, A.M., Teplofiz. Vys. Temp., 1983, vol. 21, p. 1.

    CAS  Google Scholar 

  145. Islamov, R.Sh., Konev, Yu.V., Lipatov, P.I., et al., Preprint of Physical Inst. Im. Lebedeva, USSR Acad. Sci., Moscow, 1982, no. 50.

  146. Opal, C.B., Beaty, E.C., and Peterson, W.K., At. Data, 1972, vol. 4, p. 209.

    Article  CAS  Google Scholar 

  147. Green, A.E.S. and Stolarski, R.S., J. Atmos. Terr. Phys., 1972, vol. 34, p. 1703.

    Article  CAS  Google Scholar 

  148. Willis, C. and Boyd, A.W., Int. J. Radiat. Phys. Chem., 1976, vol. 8, p. 71.

    Article  CAS  Google Scholar 

  149. Bells, W.S., Horst, W.L., and Zipf, E.C., J. Geophys. Res., 1972, vol. 77, p. 61.

    Google Scholar 

  150. Choudhury, D., Abrosi, M.M., and Sheikholeslami, M.Z., ASME Proceedings of the 1988 Heat Transfer Conference, Houston, TX, July 24–27, 1988.

  151. Frost, L.S. and Phelps, A., Phys. Rev., 1962, vol. 127, p. 1621.

    Article  CAS  Google Scholar 

  152. Haas, W. and Kishimoto, T., Proc. SPIE, 1990, vol. 1276, p. 49.

    Article  CAS  Google Scholar 

  153. Land, J.E., J. Appl. Phys., 1978, vol. 49, p. 5716.

    Article  CAS  Google Scholar 

  154. Ehrhardt, H., Langhans, L., Linder, F., et al., Phys. Rev., 1968, vol. 173, p. 222.

    Article  CAS  Google Scholar 

  155. Akima, H.J., Assoc. Comput. Mach., 1970, vol. 17, p. 589.

    Article  Google Scholar 

  156. Kishimoto, T., Wenzel, N., Grosse-Wilde, H., et al., J. Appl. Phys., 1991, vol. 69, p. 1872.

    Article  CAS  Google Scholar 

  157. Grofulović, M., Silva, T., Klarenaar, B.L.M., et al., Plasma Sources Sci. Technol., 2018, vol. 27, no. 11, p. 115009.

    Article  Google Scholar 

  158. Capezzuto, P., Cramarossa, F., D’Agostino, R., et al., J. Phys. Chem., 1976, vol. 80, p. 882.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 17-73-30046 (Deep processing of hydrocarbon feedstock: Basic research as the basis of advanced technologies).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Lebedev.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, Y.A., Shakhatov, V.A. The Rate Constant of Electron Impact Dissociation of Carbon Dioxide (Analytical Review of Calculation Methods and Known Results). High Energy Chem 55, 419–435 (2021). https://doi.org/10.1134/S0018143921300019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143921300019

Navigation