Skip to main content
Log in

Carbon nanotube-containing photorefractive polymer composites operating at telecommunication wavelengths

  • Processes and Materials for Optical Information Systems
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The field dependences of photocurrent, the two-beam coupling gain coefficient, and the grating formation time constant in polymer composites made from polyvinylcarbazole (PVK) and single-wall carbon nanotubes (SWNTs) were measured under the conditions of one-photon SWNT excitation with continuous laser radiation at a wavelength of 1550 nm. Carbon nanotubes are responsible for optical electronic absorption up to ∼2000 nm in this composite. The dependence of the quantum efficiency of generation of mobile charge carriers on the electric field E 0 as determined from the photocurrent coincides with the curves calculated via the Onsager equation expanded to the (E 0)4 term, at a quantum yield of thermalized electron-hole pairs of η0 = 0.07 and a charge separation distance in the pair of r 0 = 9.8 Å. An analysis of the photorefractive characteristics showed that the admixture of fullerene C60 in an amount of 3 wt % to the PVK composite with 0.26 wt % SWNT leads to a twofold increase in the beam-coupling gain coefficient. In the PVK-matrix composite containing 0.26 wt % SWNT and 3 wt % C60, the beam-coupling gain coefficient Γ of a 1550-nm laser beam and the net gain Γ-α are 32 and ∼27 cm−1, respectively, at a constant field of E 0 = 140 V/μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Vannikov, A.V., Rushwalski, R.W., Grishina, A.D., Pereshivko, L.Ya., Krivenko, T.V., Savel’ev, V.V., and Zolotarevskii, V.I., Opt. Spektrosk., 2005, vol. 99, p. 672.

    Article  CAS  Google Scholar 

  2. Licea-Jimenes, L., Grishina, A.D., Pereshivko, L.Ya., Krivenko, T.V., Savelyev, V.V., Rychwalski, R.W., and Vannikov, A.V., Carbon, 2006, vol. 44, p. 113.

    Article  CAS  Google Scholar 

  3. Grishina, A.D., Licea-Jimenes, L., Pereshivko, L.Ya., Krivenko, T.V., Savel’ev, V.V., Rushwalski, R.W., and Vannikov, A.V., Khim., Vys. Energ., 2006, vol. 40, p. 386 [High Energy Chem., 2006, vol. 40, p. 341].

    Google Scholar 

  4. Eralp, M., Thomas, J., Tay, S., Li, G., Meredith, G., Schulzgen, A., Peyghambarian, N., Walker, G.A., Barlow, S., and Marder, S.R., Appl. Phys. Lett., 2004, vol. 85, p. 1095.

    Article  CAS  Google Scholar 

  5. Tay, S., Thomas, J., Eralp, M., Li, G., Norwood, R.A., Schulzgen, A., Yamamoto, M., Barlow, G.A., Walker, G.A., Marder, S.R., and Peyghambarian, N., Appl. Phys. Lett., 2005, vol. 87, p. 171105-1.

    Article  CAS  Google Scholar 

  6. Douglas, W.E., Klapshina, L.G., Kuzhelev, A.S., Peng, W., and Semenov, V.V., J. Mater. Chem., 2003, vol. 13, p. 2809.

    Article  CAS  Google Scholar 

  7. Vannikov, A.V., Grishina, A.D., Shapiro, B.I., Pereshivko, L.Ya., Krivenko, T.V., Savelyev, V.V., Berendyaev, V.I., and Rychwalski, R.W., Nonlinear Opt., 2002, vol. 29, p. 7.

    Article  CAS  Google Scholar 

  8. Vannikov, A.V., Grishina, A.D., Pereshivko, L. Ya., Krivenko, T.V., Savelyev, V.V., and Rychwalski, R.W., Nonlinear Opt. Phys. Mater., 2005, vol. 14, p. 439.

    Article  CAS  Google Scholar 

  9. Vannikov, A.V., Grishina, A.D., Gorbunova, Yu.G., Enakieva, Yu.Yu., Krivenko, T.V., Savel’ev, V.V., and Tsivadze, A.Yu., Dokl. Ross. Akad. Nauk, 2005, vol. 403, p. 489.

    Google Scholar 

  10. Kippelen, B., Meerholz, K., and Peyghambarian, N., in Nonlinear Optics of Organic Molecules and Polymers, Nalwa, H.S. and Miyata, S., Eds., Boca Raton: CRC, 1997. p. 465.

    Google Scholar 

  11. Mozumder, A., J. Chem. Phys., 1974, vol. 60, p. 4300.

    Article  CAS  Google Scholar 

  12. Sidorova, L.N., Yurovskaya, M.A., Borshchevskii, A.Ya., Trushkov, I.V., and Ioffe, I.N., Fullereny. Uchebnoe posobie (Fullerenes: Tutorial), Moscow: “Ekzamen”, 2005.

    Google Scholar 

  13. Chen, Q., Kuang, L., Sargent, E.H., and Wang, Z.Y., Appl. Phys. Lett., 2003, vol. 83, p. 2115.

    Article  CAS  Google Scholar 

  14. Tameev, A.R., Licea-Jimenes, L., Pereshivko, L.Ja., Rychwalski, R.W. and Vannikov, A.V., J. Phys.: Conf. Ser., 2007, vol. 61, p. 1152.

    Article  CAS  Google Scholar 

  15. Silence, S.M., Bjorkland, C.C., and Moerner, W.E., Opt. Lett., 1994, vol. 18, p. 1822.

    Article  Google Scholar 

  16. Grunnet-Jepsen, A., Wright, D., Smith, B., Bratcher, M.S., DeClue, M.S., Siegel, J.S., and Moerner, W.E., Chem. Phys. Lett., 1998, vol. 291, p. 553.

    Article  CAS  Google Scholar 

  17. Mecher, E., Gallego-Gomez, F., Tillmann, H., Horhold, H.-H., Hummelen, J.C., and Meerholz, K., Nature, 2002, vol. 418, p. 959.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.D. Grishina, L.Ya. Pereshivko, L. Licea-Jimenez, T.V. Krivenko, V.V. Savel’ev, R. W. Rychwalski, A.V. Vannikov, 2007, published in Khimiya Vysokikh Energii, 2007, Vol. 41, No. 4, pp. 311–318.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grishina, A.D., Pereshivko, L.Y., Licea-Jiménez, L. et al. Carbon nanotube-containing photorefractive polymer composites operating at telecommunication wavelengths. High Energy Chem 41, 267–273 (2007). https://doi.org/10.1134/S0018143907040091

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143907040091

Keywords

Navigation