Skip to main content
Log in

The Influence of Mid-Oceanic Ridges on the Seismicity of the Novaya Zemlya Archipelago

  • Published:
Geotectonics Aims and scope

Abstract

The influence of the mid-oceanic ridges (MORs), including the Gakkel Ridge and the Knipovich Ridge–Lena Trough system on the seismicity of the Novaya Zemlya archipelago area for 1980‒2022 is considered. For each geological element under consideration, seismic catalogs with a single unified magnitude mbISC for an equivalent comparison of information were compiled, the annual seismic energy was calculated, and plots of its distribution by year were constructed. Analytical modeling based on the Elsasser model describing the process of local stress transfer in a rigid elastic lithosphere underlain by a viscous asthenosphere was performed, and quantitative calculations of the disturbance propagations from MORs were made. The time intervals through which disturbances from MORs reach the Novaya Zemlya archipelago are 1‒2 years for the Knipovich Ridge–Lena Trough system and 3‒5 years for the Gakkel Ridge. The maximum joint contribution to the level of seismic activity of various geological and tectonic structures of the MORs can reach 40‒60% of the applied disturbance, which is a sufficient condition for the influence on seismicity of the Novaya Zemlya orogen. The most geodynamically active structures and zones of tectonic stress concentration were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. V. G. Bykov, “Prediction and observation of strain waves in the Earth,” Geodynam., Tectonophys., 9 (3), 721–754 (2018). https://doi.org/10.5800/GT-2018-9-3-0369

    Article  Google Scholar 

  2. A. V. Vikulin, G. M. Vodinchar, V. K. Gusyakov, I. V. Melekestsev, D. R. Akmanova, A. A. Dolgaya, and N. A. Osipova, “Migration. of seismic and volcanic activity in the stress-state zones of the most geodynamically active megastructures of the Earth,” Bull. Kamchatka State Techn. Univ. 17, 5–15 (2011).

    Google Scholar 

  3. Yu. A. Vinogradov, M. I. Ryzhikova, N. V. Petrova, S. G. Poigina, and M. V. Kolomiets, “Global earthquakes in the 2022 first half according to the GS RAS,” Ross. Seismol. Zh. 5 (1), 7–25 (2023). https://doi.org/10.35540/2686-7907.2023.1.01

    Article  Google Scholar 

  4. Geology and Mineral Resources of Russian Shelves (Atlas), Ed. by M. N. Alekseev (Nauchn. Mir, Moscow, 2004) [in Russian].

    Google Scholar 

  5. E. P. Dubinin, A. V. Kokhan, and N. M. Sushchevskaya, “Tectonics and magmatism of ultraslow spreading ridges,” Geotectonics 47, 131–155 (2013). https://doi.org/10.7868/S0016853X13030028

    Article  ADS  Google Scholar 

  6. T. P. Yegorova and G. A. Pavlenkova, Velocity-density models of the Earth’s crust and upper mantle from the quartz, Craton, and Kimberlite superlong seismic profiles,” Izv. Phys. Solid Earth 51, 250–267 (2015). https://doi.org/10.7868/S0002333715010044

    Article  ADS  Google Scholar 

  7. D. V. Zarkhidze, A. S. Krasnozhen, S. I. Shkarubo, V. A. Zhuravlev, P. S. Kalugin, L. I. Bogatyrev, O. N. Zuikova, M. S. Radchenko, E. V. Bogatyreva, P. V. Recant, A. G. ZInchenko, et al., The 1 : 1 000 000 State Geological Map of the Russian Federation (3rd ed.). Ser. Morth Kara-Barens Sea, Sheet S-39, 40 (Matochkin Shar Strait). Explanatory Note (Vseross. Nauchno-Issled. Geol. Inst., St. Petersburg, 2021). www.geokniga.org/sites/geokniga/files/mapcomments/s-3940-prol-matochkin-shar-gosudarstvennaya-geologicheskaya-karta-rossiysko.pdf.

  8. E. R. Kazankova and N. V. Kornilova, “Geodynamics of Barents-Kara region from the position of rotary tectonics,” Aktual. Probl. Nefti Gaza 20 (1), (2018). https://doi.org/10.29222/ipng.2078-5712.2018-20.art34

  9. Mapping and Spatial Analytics Platform ArcGIS. http:// www.geocentre-consulting.ru/products/index?section=77 (Accessed October 1, 2023).

  10. E. A. Korago and A. P. Chukhonin, “Granitoid formations of the Novaya Zemlya,” Izv. Akad. Nauk SSSR. Ser. Geol., No. 10, 28–35 (1988).

  11. E. A. Korago, G. N. Kovaleva, R. A. Shchekoldin, V. F. Il’in, E. A. Gusev, A. A. Krylov, and D. A. Gorbunov, “Geological structure of the Novaya Zemlya Archipelago (West Russian Arctic) and peculiarities of the tectonics of the Eurasian Arctic,” Geotectonics 56, 123–156 (2022). https://doi.org/10.31857/S0016853X22020035

    Article  ADS  Google Scholar 

  12. E. A. Korago and T. N. Timofeeva, Magmatism of Novaya Zemlya in the Context of the Geological History of the Barents–North Kara Region (St. Petersburg, VNIIOkeangeologiya, 2005) [in Russian].

  13. A. V. Kokhan, “Morphology of the rift zones of ultra-slow spreading (the Reykjanes, Knipovich, and Gakkel ridges),” Vestn. MGU. Ser. 5: Geogr., No. 2, 61–69 (2013).

  14. A. V. Kokhan, E. P. Dubinin, A. L. Grokholsky, and A. S. Abramova, “Kinematics and characteristic features of the morphostructural segmentation of the Knipovich Ridge,” Oceanology 52, 688–699 (2012).

    Article  ADS  Google Scholar 

  15. G. G. Kocharyan, Fault Geomechanics, Ed. by V. V. Adushkin (GEOS, Moscow, 2016) [in Russian].

    Google Scholar 

  16. Yu. O. Kuzmin, “Recent geodynamics and slow deformation waves,” Izv., Phys. Solid Earth 56 (4), 595–603 (2020). https://doi.org/10.31857/S0002333720040055

    Article  Google Scholar 

  17. L. I. Lobkovskii, I. A. Garagash, and D. A. Alekseev, “A three-dimensional model of the Arctic lithosphere stress-strain state for the current epoch,” Byull. Mosk. O–va Ispyt. Prir., Otd. Geol. 93 (4), 19–26 (2018). https://doi.org/10.25633/ETN.2018.12.08

    Article  Google Scholar 

  18. A. N. Morozov, N. V. Vaganova, V. E. Asming, and Z. A. Evtyugina, “The ML scale in western Eurasian Arctic,” Ross. Seismol. Zh. 2 (4), 63–68 (2020). https://doi.org/10.35540/2686-7907.2020.4.06

    Article  Google Scholar 

  19. V. N. Morozov, A. I. Kagan, and V. N. Tatarinov, “Geodynamic aspects of radiation safety at the Novaya Zemlya Archipelago,” Gorn. Inform.-Analitich. Byull., No. 9, 205–219 (2015).

  20. Sh. A. Mukhamediev, A. F. Grachev, and S. L. Yunga, “Nonstationary dynamic control of seismic activity of platform regions by mid-ocean ridges,” Izv., Phys. Solid Earth, No. 1, 12–22 (2008).

    Google Scholar 

  21. D. S. Nikitin, M. D. Khutorskoi, D. A. Ivanov, and P. P. Gorskikh, The Deep Structure and Oil-and-Gas Potential of the Northeastern Barents-Sea Shelf, Ed. by K. E. Degtyarev (GEOS, Moscow, 2020) [in Russian].

    Google Scholar 

  22. S. P. Pavlov, A. V. Stoupakova, M. V. Musin, et al., Creation of a Wireframe Network of Regional Seismic Profiles for the Purpose of Studying the Structure of the Deep Horizons of the Sedimentary Mantle of the Pechora–Barents–North Kara Megabasin (Perchorsky, South Barents Regions (MAGE, Murmansk, 2011) [in Russian].

  23. N. V. Petrova and A. D. Kurova, “Comparison of earthquake classification systems in local magnitudes ML in some regions of Northern Eurasia,” Ross. Seismol. Zh 5 (2), 61–76 (2023). https://doi.org/10.35540/2686-7907.2023.2.05

    Article  Google Scholar 

  24. Software package EL (ELRESS). http://www.krsc.ru/ ?q=ru/EL (Accessed July 10, 2023).

  25. Yu. V. Roslov, T. S. Sakulina, M. L. Verba, et al., The Complex Marine Operations for the Purpose of Obtaining New Information about the Sedimentary Cover Structure of the Barents and Kara Seas (GNPP “Sevmorgeo,” St. Petersburg, 2004) [in Russian]. https://rfgf.ru/catalog/docview.php?did=05dce36469648c97d19ff3ed9e28778a.

  26. T. S. Sakulina, Yu. V. Roslov, and G. A. Pavlenkova, “Methods and results of processing of complex seismic investigations on the 2-AR profile (Barents–Kara Shelf),” Izv., Phys. Solid Earth 45, 231–238 (2009).

    Article  Google Scholar 

  27. The 1 : 10 000 000 Tectonic Map of the Arctic, Ed. O. V. Petrov and M. Pubel’e (Vseross. Nauchno-Issled. Geol Inst., St. Petersnurg, 2019) [in Russian]. www.geokniga.org/ maps/additional/tect_Arctic-map.pdf.

  28. Arkhangelsk Seismic Network. http://fciarctic.ru/index.php?page=geoss (Accessed September 30, 2023).

  29. M. D. Khutorskoy, G. N. Antonovskaya, I. M. Basakina, E. O. Kremenetskaya, and T. Kvaerna, “Seismicity, heat flow, and tectonics of the West Arctic Basin,” Monitoring. Nauka Tekhnol. 24 (3), 6–15 (2015).

    Google Scholar 

  30. M. D. Khutorskoy, G. N. Antonovskaya, I. M. Basakina, and E. A. Teveleva, “Seismicity and heat flow in the frame of East European Platform,” Volcanol. Seismol., No. 2, 74–92 (2022). https://doi.org/10.31857/S0203030622020043

  31. M. D. Khutorskoy, V. R. Akhmedzyanov, A. V. Ermakov, et al., Geothermics of Arctic Seas, Ed. by Yu. G. Leonov (GEOS, Moscow, 2013) [in Russian].

    Google Scholar 

  32. M. D. Khutorskoy, Yu. G. Leonov, A. V. Ermakov, and V. R. Akhmedzyanov, “Abnormal heat flow and the trough’s nature in the northern Svalbard Plate,” Dokl. Earth Sci. 424, 29–35 (2009).

    Article  ADS  Google Scholar 

  33. S. I. Sherman, Seismic process and the forecast of earthquakes: Tectonophysical conception, Ed. by G. A. Sobolev (GEO, Novosibirsk, 2014) [in Russian].

    Google Scholar 

  34. G. N. Antonovskaya, I. M. Basakina, N. V. Vaganova, N. K. Kapustian, Ya. V. Konechnaya, and A. N. Morozov, “Spatiotemporal relationship between Arctic Mid-Ocean Ridge system and intraplate seismicity of the European Arctic,” Seismol. Res. Lett. 92, 2876–2890 (2021). https://doi.org/10.1785/0220210024

    Article  Google Scholar 

  35. Arctic Petroleum Geology, Ed. by A. M. Spencer, A. F. Embry, D. L. Gautier, A. V. Stoupakova, and K. Sørensen (Geol. Soc. London, Mem., 2011, Vol. 35). https://doi.org/10.1144/M35.0

  36. H. S. Carslaw and J. C. Jaeger, “Conduction of heat in Solids,” J. Eng. Mater. Technol. 108, 378–378 (1989). https://doi.org/10.1115/1.3225900

    Article  Google Scholar 

  37. J. H. Davies and D. R. Davies, “Earth’s surface heat flux,” Solid Earth 1, 5–24 (2010).

    Article  ADS  Google Scholar 

  38. W. M. Elsasser, “Convection and stress propagation in the upper mantle,” in Application of Modern Physics to the Earth and Planetary Interiors, Ed. by S. K. Runcorn (Wiley-Intersci., NY, USA, 1969), pp. 223–246.

    Google Scholar 

  39. W. Fjeldskaar, “What about the asthenosphere viscosity? Comment on “Sea-level change, glacial rebound and mantle viscosity for northern Europe” by K. Lambeck, C. Smither and P. Johnston,” Geophys. J. Int. 142 (1), 277–278 (2000). https://doi.org/10.1046/j.1365-246x.2000.00126.x

    Article  ADS  Google Scholar 

  40. M. F. Hutchinson, “A new procedure for gridding elevation and stream line data with automatic removal of spurious pits,” J. Hydrol. 106 (3–4), 211–232 (1989). https://doi.org/10.1016/0022-1694(89)90073-5

    Article  ADS  Google Scholar 

  41. M. F. Hutchinson, T. Xu, and J. A. Stein, “Recent progress in the ANUDEM elevation gridding procedure,” in Geomorphometry, Ed. by T. Hengel, I. S. Evans, J. P. Wilson, and M. Gould (Redlands, California, USA, 2011), pp. 19–22.

    Google Scholar 

  42. ISC Bull. http://www.isc.ac.uk/iscbulletin/search/bulletin/ (Accessed July 10, 2023). https://doi.org/10.31905/D808B830

  43. W.-Y. Kim and L. Ottemöller, “Regional Pn body-wave magnitude scale mb(Pn) for earthquakes along the northern mid-Atlantic Ridge,” J. Geophys. Res.: Solid Earth 122, 10321–10340 (2017). https://doi.org/10.1002/2017JB014639

    Article  ADS  Google Scholar 

  44. P. Klitzke, J. I. Faleide, M. Scheck-Wenderoth, and J. Sippel, “A lithosphere-scale structural model of the Barents Sea and Kara Sea region,” Solid Earth 6, 153‒172 (2015). https://doi.org/10.5194/se-6-153-2015

  45. T. Kværna, B. D. E. Dando, and S. J. Gibbons, “Seismic monitoring of Novaya Zemlya: Progress, challenges and prospects,” Seismol. Res. Lett. 94 (3), 1495–1508 (2023). https://doi.org/10.1785/0220220338

    Article  Google Scholar 

  46. D. Marsan and C. J. Bean, “Seismicity response to stress perturbations analyzed for a word-wide catalogue,” Geophys. J. Int. 154, 179–195 (2003).

    Article  ADS  Google Scholar 

  47. A. N. Morozov, V. E. Asming, N. V. Vaganova, Ya. V. Konechnaya, Ya. A. Mikhaylova, and Z. A. Evtyugina, “Seismicity of the Novaya Zemlya archipelago: Relocated event catalog from 1974 to 2014,” J. Seismol 21 (6), 1439–1466 (2017). https://doi.org/10.1007/s10950-017-9676-y

    Article  ADS  Google Scholar 

  48. A. N. Morozov, N. V. Vaganova, Ya. A. Mikhailova, and I. V. Starkov, “Unification of magnitudes for modern earthquakes in the Eurasian Arctic region,” Seismic Instruments 58 (4), 389–397 (2022). https://doi.org/10.3103/S0747923922040077

    Article  Google Scholar 

  49. F. F. Pollitz, R. Burgmann, and B. Romanowicz, “Vi-scosity of oceanic asthenosphere inferred from remote triggering of earthquakes,” Science 280 (5367), 1245–1249 (1998). https://doi.org/10.1126/science.280.5367.12459596574

    Article  ADS  CAS  PubMed  Google Scholar 

  50. K. Priestley and D. McKenzie, “The relationship between shear wave velocity, temperature, attenuation and viscosity in the shallow part of the mantle,” Earth Planet. Sci. Lett. 381, 78–91 (2013).

    Article  ADS  CAS  Google Scholar 

  51. E. S. Skordas, K. Meyer, R. Olson, and O. Kulhanek, “Causality between interplate (North Atlantic) and intraplate (Fennoscandia) seismicities,” Tectonophysics 185 (3–4), 295–307 (1991). https://doi.org/10.1016/0040-1951(91)90450-7

    Article  ADS  Google Scholar 

  52. Spatial Analyst Tools–Topo to Raster, http:// https:// pro.arcgis.com/ru/pro-app/latest/tool-reference/spatial-analyst/topo-to-raster (Accessed October 1, 2023).

  53. The Global Heat Flow Database. https://www.ihfc-iugg. org/products/global-heat-flow-database (Accessed September 30, 2023).

  54. I. Velicogna and J. Wahr, “Postglacial rebound and Earth’s viscosity structure from GRACE,” J. Geophys. Res. 107 (B12), 2376 (2002). https://doi.org/10.1029/2001JB001735

    Article  ADS  Google Scholar 

  55. I. A. Vorobieva, A. D. Gvishiani, P. N. Shebalin, B. A. Dzeboev, B. V. Dzeranov, A. A. Skorkina, N. A. Sergeeva, and N. A. Fomenko, “Integrated Earthquake Catalog II: The Western sector of the Russian Arctic,” Appl. Sci. 13 (7084) (2023). https://doi.org/10.3390/app13127084

  56. X. Yang, R. North, C. Romney, and P. G. Richards, “Worldwide nuclear explosions,” Int. Geophys. 81, 1595–1599 (2003).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We express our gratitude to Dr. D.S. Nikitin (Geological Institute of the Russian Academy of Sciences) for comprehensive support in installation of the seismic station at Novaya Zemlya Archipelago. We are grateful to the staff of the Karpinsky Russian Geological Research Institute (Russian Geological Research Institute (VSEGEI), St. Petersburg, Russia) for the opportunity to use digital geologic maps developed in VSEGEI. We are also grateful to the reviewer E.P. Dubinin (Earth Science Museum, Lomonosov Moscow State University, Moscow, Russia) and an anonymous reviewer for helpful comments and to the editor M.N. Shoupletsova (Geological Institute of the Russian Academy of Sciences) for careful editing.

Funding

This work was performed within the framework of a state assignment of N. Laverov Federal Center for Integrated Arctic Research, Ural Branch, Russian Academy of Sciences, state registration no. 122011300389-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Antonovskaya.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by D. Voroshchuk

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonovskaya, G.N., Konechnaya, Y.V. & Basakina, I.M. The Influence of Mid-Oceanic Ridges on the Seismicity of the Novaya Zemlya Archipelago. Geotecton. 57, 759–773 (2023). https://doi.org/10.1134/S0016852123060031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852123060031

Keywords:

Navigation