Skip to main content
Log in

Tectonic and Anthropogenic Characteristics of the November 15, 2019 Micro Earthquakes Sequence, Kuwait

  • Published:
Geotectonics Aims and scope

Abstract

On November 15, 2019, a sequence of small/micro earthquakes struck specific area near an oil production field in the northern part of the State of Kuwait. Generally, the phenomenon of the earthquakes swarming is rarely occurring in Kuwait. More than 56 earthquakes were monitored by the Kuwait National Seismic Network (KNSN) where the magnitudes of the earthquakes ranged between 0.8 and 4.1, and their recorded continued for two consecutive days. In this respect, we conducted a modern geophysical analysis (e.g. waveform-fitting, spectral analysis and faulting focal mechanism) to identify the nature and origin of these earthquakes. The values of moment tensors, double-couple (DC) and non-double-couple components signature, stress drop, and stress ratios are fundamentally calculated, in addition to detailed knowledge of the structural setting of the region where earthquake swarming occurred were also used to distinguish and estimate natural and anthropogenic components percentages of theses earthquakes. The results obtained indicated that these earthquakes sequence has an equivalent anthropogenic to tectonic component, meaning that it occurred as a result of oil extraction, but also occurred on pre-existing faults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. A. K. Abd el-aal, F. Al-Jeri, A. Al-Enezi, and J. A. Parol, “Seismological aspects of the 15 November 2019 earthquakes sequence, Kuwait,” Arab. J. Geosci. 13, 941 (2020). https://doi.org/10.1007/s12517-020-05919-1

  2. A. K. Abd el-aal, J. A. Parol, F. Al-Jeri, and A. Al-Enezi, “Modeling and simulating ground motion from potential seismic sources to Kuwait: Local and regional scenarios,” Geotectonics (in press).

  3. V. Baranova, A. Mustaqeem, and S. Bell, “A model for induced seismicity caused by hydrocarbon production in the Western Canada Sedimentary Basin,” Can. J. Earth Sci. 36, 47–66 (1999). https://doi.org/10.1139/e98-080

    Article  Google Scholar 

  4. J. Brune, “Tectonic stress and the spectra of seismic shear waves from earthquakes,” J. Geophys. Res. 75, 4997–5009 (1970).

    Article  Google Scholar 

  5. G. J. Carman, “Structural elements of onshore Kuwait,” GeoArabia 1, 239–266 (1996).

    Google Scholar 

  6. S. Cesca, A. Rohr, and T. Dahm, “Discrimination of induced seismicity by full moment tensor inversion and decomposition,” J. Seismol. 17, 147–163 (2013). https://doi.org/10.1007/s10950-012-9305-8

    Article  Google Scholar 

  7. H. Clarke, L. Eisner, P. Styles, and P. Turner, “Felt seismicity associated with shale gas hydraulic fracturing: The first documented example in Europe,” Geophys. Res. Lett. 41, 8308–8314 (2014). https://doi.org/10.1002/2014GL062047

    Article  Google Scholar 

  8. T. Dahm, D. Becker, M. Bischoff, S. Cesca, B. Dost, R. Fritschen, S. Hainzl, C. D. Klose, D. Kühn, S. Lasocki, and T. Meier,” Recommendation for the discrimination of human-related and natural seismicity,” J. Seismol. 17, 197‒202 (2013).

    Article  Google Scholar 

  9. A. M. Dziewonski, T. A. Chou, and J. H. Woodhouse, “Determination of earthquake source parameters from waveform data for studies of global and regional seismicity,” J. Geophys. Res., B 86, 2825‒2852 (1981).

  10. D. W. Eaton and A. B. Mahani, “Focal mechanisms of some inferred induced earthquakes in Alberta, Canada,” Seismol. Res. Lett. 86, 1078–1085 (2015). https://doi.org/10.1785/0220150066

    Article  Google Scholar 

  11. W. L. Ellsworth, “Injection-induced earthquakes,” Science 341 (6142), 142‒143 (2013). https://doi.org/10.1126/science.1225942

    Article  Google Scholar 

  12. T. S. Eyre, C. J. Bean, L. De Barros, G. S. O’Brien, F. Martini, I. Lokmer, M. M. Mora, J. F. Pacheco, and G. J. Soto, “Moment tensor inversion for the source location and mechanism of long period (LP) seismic events from 2009 at Turrialba volcano, Costa Rica,” J. Volcanol. Geotherm. Res. 258, 215‒223 (2013).

    Article  Google Scholar 

  13. T. J. Fitch, D. W. McCowan, and M. W. Shields, “Estimation of the seismic moment tensor from teleseismic body wave data with applications to intraplate and mantle earthquakes,” J. Geophys. Res., B 85, 3817‒3828 (1980).

  14. L. Fojtíková and V. Vavryčuk, “Tectonic stress regime in the 2003–2004 and 2012–2015 earthquake sequences in the Ubaye Valley, French Alps,” Pure Appl. Geophys. 175, 1997‒2008. (2018). https://doi.org/10.1007/s00024-018-1792-2

    Article  Google Scholar 

  15. L. Fojtíková, V. Vavryčuk, A. Cipciar, and J. Madarás, “Focal mechanisms of micro-earthquakes in the Dobrá Voda seismoactive area in the Malé Karpaty Mts. (Little Carpathians), Slovakia,” Tectonophysics 492, 213‒229 (2010).

    Article  Google Scholar 

  16. M. Godano, T. Bardainne, M. Regnier, and A. Deschamps, “Moment-tensor determination by nonlinear inversion of amplitudes,” Bull. Seismol. Soc. Am. 101, 366‒378 (2011).

    Article  Google Scholar 

  17. R. M. Gok, A. J. Rodgers, and A. Al-Enezi, Seismicity and Improved Velocity Structure in Kuwait, No. TR-218465 of Lawrence Livermore Lab., [Rep.] UCRL (Lawrence Livermore Natl. Lab., 2006).

  18. P. Goldstein and A. Snoke, “SAC availability for the IRIS community,” IRIS Data Services Newslett. VII (2005). https://ds.iris.edu/ds/newsletter/vol7/no1/193/ sac-availability-for-the-iris-community/

  19. C. Gu, F. Al-Jeri, A. Al-Enezi, O. Büyüköztürk, and M. N. Toksöz, “Source mechanism study of local earthquakes in Kuwait,” Seismol. Res. Lett. 88, 1465–1471 (2017). https://doi.org/10.1785/0220170031

    Article  Google Scholar 

  20. C. Gu, G. A. Prieto, A. Al-Enezi, F. Al-Jeri, J. Al-Qazweeni, K. Kamal, S. Kuleli, A. Mordret, O. Büyüköztürk, and M. N. Toksöz, “Ground motion in Kuwait from regional and local earthquakes: Potential effects on tall buildings,” Pure Appl. Geophys. 175, 4183‒4195 (2018). https://doi.org/10.1007/s00024-018-1943-5

    Article  Google Scholar 

  21. A. Guilhem, L. Hutchings, D. S. Dreger, and L. R. Johnson, “Moment tensor inversions of M ~ 3 earthquakes in the Geysers geothermal fields, California,” J. Geophys. Res.: Solid Earth 119, 2121–2137 (2014). https://doi.org/10.1002/2013JB010271

    Article  Google Scholar 

  22. T. C. Hanks and M. Wyss, “The use of body-wave spectra in the determination of seismic-source parameters,” Bull. Seismol. Soc. Am. 62, 561–589 (1972).

    Google Scholar 

  23. J. L. Hardebeck and P. M. Shearer, “Using S/P amplitude ratios to constrain the focal mechanisms of small earthquakes,” Bull. Seismol. Soc. Am. 93, 2434‒2444 (2003).

    Article  Google Scholar 

  24. R. B. Herrmann, “Computer programs in seismology: An evolving tool for instruction and research,” Seismol. Res. Lett. 84, 1081‒1088 (2013).

    Article  Google Scholar 

  25. R. B. Herrmann and C. Y. Wang, “A comparison of synthetic seismograms,” Bull. Seismol. Soc. Am. 75, 41‒56 (1985).

    Google Scholar 

  26. A. A. Holland, “Earthquakes triggered by hydraulic fracturing in South-Central Oklahoma,” Bull. Seismol. Soc. Am. 103, 1784–1792 (2013). https://doi.org/10.1785/0120120109

    Article  Google Scholar 

  27. S. E. Hough, “Shaking from injection-induced earthquakes in the central and Eastern United States,” Bull. Seismol. Soc. Am. 104, 2619–2626 (2014).https://doi.org/10.1785/0120140099

    Article  Google Scholar 

  28. M. L. Jost and R. B. Herrmann, “A student’s guide to and review of moment tensor,” Seismol. Res. Lett. 60, 37–57 (1989). https://doi.org/10.1785/gssrl.60.2.37

    Article  Google Scholar 

  29. B. R. Julian, A. D. Miller, and G. R. Foulger, “Non-double-couple earthquakes. I. Theory,” Rev. Geophys. 36, 525–549 (1998). https://doi.org/10.1029/98RG00716

    Article  Google Scholar 

  30. L. Knopoff and M. J. Randall, “The compensated linear-vector dipole: A possible mechanism for deep earthquakes,” J. Geophys. Res. 75, 4957‒4963 (1970).

    Article  Google Scholar 

  31. G. Laske, G. Masters, Z. Ma, and M. Pasyanos, “Update on CRUST1.0 – A 1-degree global model of Earth’s crust,” EGU Gen. Assem. Abstr. 15, Abstr. No. 2658 (2013).

  32. A. McGarr, D. Simpson, and L. Seeber, “Case histories of induced and triggered seismicity,” in International Handbook of Earthquake and Engineering Seismology, vol. 81, Pt. A of International Geophysics, Ed. by W. H. K. Lee, H. Kanamori, P. C. Jennings, and C. Kisslinger (Academic Press, 2002), ch. 40, pp. 647‒664.

  33. A. J. Michael, “Determination of stress from slip data: Faults and folds,” J. Geophys. Res., B 89, 11517‒11526 (1984).

  34. A. D. Miller, G. R. Foulger, and B. R. Julian, “Non-double-couple earthquakes. II. Observations,” Rev. Geophys. 36, 551‒568 (1998).

    Article  Google Scholar 

  35. A. D. Miller, B. R. Julian, and G. R. Foulger, “Three-dimensional seismic structure and moment tensors of non-double-couple earthquakes at the Hengill–Grensdalur volcanic complex, Iceland,” Geophys. J. Int. 133, 309–325 (1998). https://doi.org/10.1046/j.1365246X.1998.00492.x

    Article  Google Scholar 

  36. M. E. Pasyanos, H. Tkalcic, R. Gok, A. Al-Enezi, and A. J. Rodgers, “Seismic structure of Kuwait,” Geophys. J. Int. 170, 299–312 (2007). https://doi.org/10.1111/j.1365-246X.2007.03398.x

    Article  Google Scholar 

  37. A. Ross, G. R. Foulger, and B. R. Julian, “Non-double-couple earthquakes mechanisms at the Geysers geothermal area, California,” Geophys. Res. Lett. 23, 877–880 (1996). https://doi.org/10.1029/96GL00590

    Article  Google Scholar 

  38. H. Saadalla, A. K. Abd el-aal, A. Mohamed, and K. El-Faragawy, “Characteristics of earthquakes recorded around the High Dam Lake with comparison to natural earthquakes using waveform inversion and source spectra,” Pure Appl. Geophys. 177, 3667–3695 (2020). https://doi.org/10.1007/s00024-020-02490-4

    Article  Google Scholar 

  39. S. A. Spikin, “Estimation of earthquake source parameters by the inversion of waveform data: Global seismicity, 1981‒1983,” Bull. Seismol. Soc. Am. 76, 1515‒1541 (1986).

    Google Scholar 

  40. B. W. Stump and L. R. Johnson, “The determination of source properties by the linear inversion of seismograms,” Bull. Seismol. Soc. Am. 67, 1489‒1502 (1977).

    Google Scholar 

  41. D. Suetsugu, Practice on Source Mechanism: Int. Inst. Seismol. Earthquake Eng., Lect. Note (Tsukuba, Japan, 1998).

    Google Scholar 

  42. V. Vavryčuk, “Principal earthquakes: Theory and observations from the 2008 West Bohemia sequence,” Earth Planet. Sci. Lett. 305, 290‒296 (2011). https://doi.org/10.1016/j.epsl.2011.03.002

    Article  Google Scholar 

  43. V. Vavryčuk, “Iterative joint inversion for stress and fault orientations from focal mechanisms,” Geophys. J. Int. 199, 69‒77 (2014).

    Article  Google Scholar 

  44. V. Vavryčuk, F. Bouchaala, and T. Fischer, “High-resolution fault image from accurate locations and focal mechanisms of the 2008 sequence earthquakes in West Bohemia, Czech Republic,” Tectonophysics 590, 189‒195 (2013). https://doi.org/10.1016/j.tecto.2013.01.025

    Article  Google Scholar 

  45. R. Wang, Y. J. Gu, R. Schultz, A. Kim, and G. Atkinson, “Source analysis of a potential hydraulic fracturing induced earthquake near Fox Creek, Alberta,” Geophys. Res. Lett. 43, 564‒573 (2016). https://doi.org/10.1002/2015GL066917

    Article  Google Scholar 

  46. Y. Yagi and N. Nishimura, “Moment tensor inversion of near source seismograms,” IISEE Bull. 45, 133–138 (2011).

    Google Scholar 

  47. Y. Yagi and Y. Fukahata, “Introduction of uncertainty of Green’s function into waveform inversion for seismic source processes,” Geophys. J. Int. 186, 711‒720 (2012).

    Article  Google Scholar 

  48. H. Zhang, D. W. Eaton, G. Li, Y. Liu, and R. M. Harrington, “Discriminating induced seismicity from natural earthquakes using moment tensors and source spectra,” J. Geophys. Res. Ser.: Solid Earth 121, 972‒993 (2016).

    Article  Google Scholar 

  49. P. Zhao, D. Kühn, V. Oye, and S. Cesca, “Evidence for tensile faulting deduced from full waveform moment tensor inversion during the stimulation of the Basel enhanced geothermal system,” Geothermics 52, 74–83 (2014). https://doi.org/10.1016/j.geothermics.2014.01.003

    Article  Google Scholar 

  50. L. Zhu and D. V. Helmberger, “Advancement in source estimation techniques using broadband regional seismograms,” Bull. Seismol. Soc. Am. 86, 1634‒1641 (1996).

    Google Scholar 

  51. Gempa GmbH. https://www.gempa.de/. Accessed March 1, 2020.

  52. Integrated Research Institutions for Seismology. http://www.iris.edu/. Accessed March 1, 2020.

Download references

ACKNOWLEDGMENTS

The Researchers are ungrateful to the Kuwait National Seismic Network (KNSN) at Kuwait Institute for Scientific Research (KISR) for providing the earthquake digital data, computers, software’s, other facilitates necessary for the analysis of seismic data. Authors thank Professor Robert B. Herman (Department of Earth and Atmospheric Sciences, Saint Louis University, USA) for providing us with Computer Program in Seismology (CPS.330). Figures were generated by Generic Mapping Tool (GMT), Grapher software. The researchers deeply thank Professor V. Vavrycuk (Institute of Geophysics of the Czech Academy of Science, Prague, Czech Republic) for supplying us with stress tensor software. For the efforts contributed by the aforementioned agencies and professional, our gratitude is extended.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Abd el-aal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd el-aal, A.K., Al-Enezi, A., Saadalla, H. et al. Tectonic and Anthropogenic Characteristics of the November 15, 2019 Micro Earthquakes Sequence, Kuwait. Geotecton. 55, 112–127 (2021). https://doi.org/10.1134/S0016852121010039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852121010039

Keywords:

Navigation