Skip to main content
Log in

Paleoproterozoic supercontinent: Origin and evolution of accretionary and collisional orogens exemplified in Northern cratons

  • Published:
Geotectonics Aims and scope

Abstract

The evolution of the North American, East European, and Siberian cratons is considered. The Paleoproterozoic juvenile associations concentrate largely within mobile belts of two types: (1) volcanic-sedimentary and volcanic-plutonic belts composed of low-grade metamorphic rocks of greenschist to low-temperature amphibolite facies and (2) granulite-gneiss belts with a predominance of high-grade metamorphic rocks of high-temperature amphibolite to ultrahigh-temperature granulite facies. The first kind of mobile belt includes paleosutures made up of not only oceanic and island-arc rock associations formed in the process of evolution of relatively short-lived oceans of the Red Sea type but also peripheral accretionary orogens consisting of oceanic, island-arc, and backarc terranes accreted to continental margins. The formation of the second kind of mobile belt was related to the activity of plumes expressed in vigorous heating of the continental crust; intraplate magmatism; formation of rift depressions filled with sediments, juvenile lavas, and deposits of pyroclastic flows; and metamorphism of lower and middle crustal complexes under conditions of granulite and high-temperature amphibolite facies that, in addition, spreads over the fill of rift depressions. The evolution of mobile belts pertaining to both types ended with thrusting in a collisional setting. Five periods are recognized in Paleoproterozoic history: (1) origin and development of a superplume in the mantle that underlay the Neoarchean supercontinent; this process resulted in separation and displacement of the Fennoscandian fragment of the supercontinent (2.51–2.44 Ga); (2) a period of relatively quiet intraplate evolution complicated by locally developed plume-and plate-tectonic processes (2.44–2.0 (2.11) Ga); (3) the origin of a new superplume in the subcontinental mantle (2.0–1.95 Ga); (4) the complex combination of intense global plume-and plate-tectonic processes that led to the partial breakup of the supercontinent, its subsequent renascence and the accompanying formation of collisional orogens in the inner domains of the renewed Paleoproterozoic supercontinent, and the emergence of accretionary orogens along some of its margins (1.95–1.75 (1.71) Ga); and (5) postorogenic and anorogenic magmatism and metamorphism (<1.75 Ga).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Bakushkin, D. Z. Zhuravlev, Yu. A. Balashov, et al., “The Karikjärvi Pluton,” in Geochronology and Genesis of Layered Mafic Intrusions, Volcanics and Granite Gneisses of the Kola Peninsula (Kola Sci. Center, Acad. Sci. SSSR, Apatity, 1990), pp. 16–17 [in Russian].

    Google Scholar 

  2. V. V. Balagansky, M. Ya. Timmerman, R. V. Kislitsyn, et al., “Isotopic Age of Rocks in the Kolvitsa Belt and Umba Block (Southeastern Branch of the Lapland Granulite Belt), Kola Peninsula,” Vest. Murmansk Gos. Tekhn. Univer. 1(3), 19–32 (1998) [in Russian].

    Google Scholar 

  3. Yu. A. Balashov and V. N. Glaznev, “Mantle Cycles of Magmatism,” in Deep Magmatism, Its Sources, and Their Relations to Plume Processes (Geol. Inst., Siberian Division, Russian Acad. Sci., Ulan-Ude, 2004), pp. 55–58 [in Russian].

    Google Scholar 

  4. Sh. K. Baltybaev, O. A. Levchenkov, N. G. Berezhnaya, et al., “Age and Duration of the Svecofennian Plutonometamorphic Activity in the Ladoga Area, Southeastern Baltic Shield,” Petrologiya 12(4), 374–393 (2004) [Petrology 12 (4), 330–347 (2004)].

    Google Scholar 

  5. B. V. Belyatsky, M. A. Tikhomirova, and E. V. Savva, “Age and Genesis of the Proterozoic Tiksheozero Alkaline Ultramafic Massif (Northern Karelia): Results of Rb-Sr-Nd Studies,” in Proceedings of the 1st Russian Conference on Isotopic Dating and Geological Processes: New Methods and Results (GEOS, Moscow, 2000), pp. 63–65 [in Russian].

    Google Scholar 

  6. E. V. Bibikova, V. F. Mel’nikov, and K. Kh. Avakyan, “Lapland Granulites: Petrochemistry, Geochemistry, and Isotopic Age,” Petrologiya 1(2), 215–234 (1993).

    Google Scholar 

  7. V. R. Vetrin, “The Lower Crust of Belomorian Megablock: Age, Structure, and Formation Conditions: Deep Xenolith Study,” Vest. Murmansk Gos. Techn. Univ. 1(3), 7–18 (1998).

    Google Scholar 

  8. G. L. Vursii, T. B. Bayanova, and N. V. Levkovich, “Structure and U-Pb Age of Ultramafic-Mafic Rocks of the Gremyakha-Vyrmes Pluton,” in Proceedings of the 1st Russian Conference on Isotopic Dating and Geological Processes: New Methods and Results (GEOS, Moscow, 2000), pp. 99–100 [in Russian].

    Google Scholar 

  9. G. S. Gusev and A. I. Peskov, “Proterozoic Trachyandesites and Mafic Rocks of the Akitkan Range, Northern Baikal Region,” Geotektonika 27(4), 75–86 (1992).

    Google Scholar 

  10. V. L. Zlobin, M. M. Bogina, and M. V. Mints, “Paleoproterozoic Felsic Metavolcanics of the Lehta Structure,” in Proceedings of X All-Russia Petrographic Conference (Geol. Institute, Russian Acad. Sci., Apatity, 2005), Vol. 3, pp. 152–154 [in Russian].

    Google Scholar 

  11. V. L. Zlobin, M. M. Bogina, and M. V. Mints, “Paleoproterozoic (pre-Jatulian) Volcanics in the East Karelian Volcanic Belt: New Data,” in Proceedings of Conference on the Belomorian Mobile Belt and Its Analogues (Inst. Geol., Karelian Sci. Center, Russian Acad. Sci., Petrozavodsk, 2005), pp. 167–169 [in Russian].

    Google Scholar 

  12. L. P. Karsakov, Deep Granulites (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  13. T. V. Kaulina, “Results of U-Pb Dating of Zircons from the Tanaelv Belt,” in Proceedings of X Conference in Memory of K.O. Kratz on Geology and Mineral Resources of Northwestern and Central Russia (Geol. Inst., Kola Sci. Center, Russian Acad. Sci., Apatity, 1999), pp. 51–57 [in Russian].

    Google Scholar 

  14. T. V. Kaulina, R. V. Kislitsyn, and E. A. Apanasevich, “Final Stages of Metamorphic Evolution of the Tanaelv Belt, Kola Peninsula, Baltic Shield: Evidence from U-Rb Dating of Zircon, Titanite, and Rutile,” Geokhimiya 42(6), 597–603 (2004) [Geochem. Intern. 42 (6), 513–519 (2004)].

    Google Scholar 

  15. V. P. Kovach, A. B. Kotov, V. I. Berezkin, et al., “Age Limits of High-Grade Metamorphic Supracrustal Complexes in the Central Aldan Shield: Sm-Nd Isotopic Data,” Stratigr. Geol. Korrelyatsiya 7(1), 3–17 (1999) [Stratigr. Geol. Correlation 7 (1), 1–14 (1999)].

    Google Scholar 

  16. A. B. Kotov, V. P. Kovach, E. V. Sal’nikova, et al., “Stages of Continental Crust Formation in the Central Aldan Granulite-Gneiss Domain: U-Pb and Sm-Nd Isotopic Data on Granitoids,” Petrologiya 3(1), 99–110 (1995).

    Google Scholar 

  17. M. V. Mints, R. G. Berzin, Yu. N. Andryushchenko, et al., “The Deep Structure of the Karelian Craton along 1-EB Geotraverse, Southeast of the Scandinavian Shield,” Geotektonika 38(5), 10–25 (2004) [Geotectonics 38 (5), 329–342 (2004)].

    Google Scholar 

  18. M. V. Mints, R. G. Berzin, N. G. Zamozhnyaya, et al., “Role of Collision Processes in the Structure of Early Precambrian Crust in the Eastern Baltic Shield (Geological Interpretation of CDP Seismic Data),” in Metallogeny of Series of Collisional Geodynamic Settings, Ed. by N. V. Mezhelovsky (GEOS, Moscow, 2002), Vol. 1, pp. 242–301 [in Russian].

    Google Scholar 

  19. M. V. Mints, R. G. Berzin, A. K. Suleimanov, et al., “The Deep Structure of Early Precambrian Crust of the Karelian Craton, Southeastern Scandinavian Shield: Results of Investigations along Profile 4B,” Geotektonika 46(2), 10–29 (2004) [Geotectonics 46 (2), 87–102 (2004)].

    Google Scholar 

  20. M. V. Mints, V. R. Vetrin, and A. N. Konilov, “Early Proterozoic Evolution, Structure, and Thermal Crustal Structure of the Lapland-Belomorian Domain: Integration of the Results of Geological and Petrological Studies of the Lapland Granulites and Deep Xenoliths and the Data of Seismic Profiling,” in Proceedings of the 1st All-Russia Petrographic Conference (Inst. Geol., Komi Sci. Center, Ural Division, Russian Acad. Sci., Syktyvkar, 2000), Vol. 4, pp. 168–170 [in Russian].

    Google Scholar 

  21. M. V. Mints, V. N. Glaznev, A. N. Konilov, et al., Early Precambrian of the Northeastern Baltic Shield: Paleogeodynamics, Structure, and Evolution of Continental Crust (Nauchnyi Mir, Moscow, 1996) [in Russian].

    Google Scholar 

  22. M. V. Mints, I. B. Filippova, A. K. Suleimanov, et al., “East European Craton As a Paleoproterozoic Accretionary-Collisional Orogen,” in Proceedings of the 38th Tectonic Conference on Tectonics of the Earth’s Crust and Mantle. Tectonic Factors of the Spatial Distribution of Mineral Resources (GEOS, Moscow, 2005), pp. 452–456 [in Russian].

    Google Scholar 

  23. M. V. Mints, I. B. Filippova, A. K. Suleimanov, et al., “Deep Structure of the East European Craton: Formation of Overthrust and Underthrust Structures Related to Accretion and Collision Processes in the Inner Part of Supercontinent,” in Proceedings of XXXVIII Tectonic Conference on Tectonics of the Earth’s Crust and Mantle. Tectonic Factors of the Spatial Distribution of Mineral Resources (GEOS, Moscow, 2005), pp. 456–459 [in Russian].

    Google Scholar 

  24. F. P. Mitrofanov, V. V. Balagansky, Yu. A. Balashov, et al., “U-Rb Age of Gabbroanorthosites of the Kola Peninsula,” Dokl. Akad. Nauk 333(1), 95–98 (1993).

    Google Scholar 

  25. L. A. Neimark, A. M. Larin, G. V. Ovchinnikova, and S. Z. Yakovleva, “U-Rb Age of the Dzhugdzhur Anorthosites,” Dokl. Akad. Nauk 323(4–6), 514–518 (1992).

    Google Scholar 

  26. L. A. Neimark, A. A. Nemchin, V. R. Vetrin, and E. V. Sal’nikova, “Sm-Nd and Pb-Pb Isotopic Systematic of Deep Crustal Xenoliths and Explosion Pipes in the Southern Kola Peninsula,” Dokl. Akad. Nauk 326(6), 781–784 (1993).

    Google Scholar 

  27. L. I. Nerovich, Candidate’s Dissertation in Geology and Mineralogy (Apatity, 1999).

  28. A. D. Nozhkin, “Early Proterozoic Marginal Continental Complexes of the Angara Foldbelt and Their Metallogeny,” Geol. Geofiz. 40(11), 1524–1544 (1999).

    Google Scholar 

  29. Early Precambrian of the Baltic Shield, Ed. by V. A. Glebovitsky (Nauka, St. Petersburg, 2005) [in Russian].

    Google Scholar 

  30. O. M. Rosen, “The Siberian Craton: Tectonic Demarcation and Problems of Evolution,” Geotektonika, 37(3), 1–19 (2003) [Geotectonics 37 (3), 175–192 (2003)].

    Google Scholar 

  31. O. M. Rosen, D. Z. Zhuravlev, M. K. Sukhanov, et al., “Early Proterozoic Terranes, Collision Zones and Related Anorthosites in Northeastern Siberian Craton: Isotopic Geochemistry and Age Characteristics,” Geol. Geofiz. 41(2), 159–178 (2000).

    Google Scholar 

  32. O. M. Rosen, V. P. Serenko, Z. V. Spetsius, et al., “Yakutian Kimberlite Province: Position in the Structure of the Siberian Craton, Composition of Upper and Lower Crust As Deduced from Drilling Results and Inclusions in Kimberlites,” Geol. Geofiz. 43(1), 3–26 (2002).

    Google Scholar 

  33. D. V. Rundquist, M. V. Mints, A. M. Larin, et al., Metallogeny of the Series of Early Precambrian Geodynamic Setting (Geokart, Moscow, 1999) [in Russian].

    Google Scholar 

  34. V. M. Savatenkov, Yu. D. Pushkarev, A. V. Sergeev, and R. B. Sulimov, “Carbonatites As Indicators of a New Ore Specialization of the Gremyakha-Vyrmes Pluton, Russia,” Geol. Rudn. Mestorozhd. 41(5), 449–454 (1999) [Geol. Ore Deposits 41 (5), 409–413 (1999)].

    Google Scholar 

  35. S. A. Svetov, A. I. Golubev, and A. I. Svetova, “Geochemistry of the Sumian Basaltic Andesites in Central Karelia,” in Geology and Mineral Resources of Karelia, Ed. by A. I. Golubev (Karelian Sci. Center, Russian Acad. Sci., Petrozavodsk, 2001), pp. 18–26 [in Russian].

    Google Scholar 

  36. V. F. Smolkin, F. P. Mitrofanov, A. A. Avedisyan, et al., Magmatism, Sedimentogenesis, and Geodynamics of the Pechenga Paleorift (Kola Sci. Center, Russian Acad. Sci., Apatity, 1995) [in Russian].

    Google Scholar 

  37. M. K. Sukhanov and D. Z. Zhuravlev, “Sm-Nd Dating of the Dzhugdzhur Precambrian Anorthosites,” Dokl. Akad. Nauk SSSR 304(2), 964–968 (1989).

    Google Scholar 

  38. T. Frish, G. D. Jackson, V. A. Glebovitsky, et al., “U-Rb Zircon Geochronology of the Kolvitsa Gabbroanorthosite Complex, the Southern Kola Peninsula, Russia,” Petrologiya 3(3), 248–254 (1995).

    Google Scholar 

  39. V. E. Khain and N. A. Bozhko, Historical Geotectonics (Nedra, Moscow, 1988) [in Russian].

    Google Scholar 

  40. R. Ernst and V. Blicker, “Large Magmatic Provinces and Their Dike Swarms: Key to Construction of Paleogeographic Record of the Earth before 2.5 Ga Ago,” in Proceedings of the 34th Tectonic Conference on Active Tectogenesis Areas in Modern and Ancient the Earth’s History (GEOS, Moscow, 2006), Vol. 2, pp. 398–401.

    Google Scholar 

  41. V. V. Yarmolyuk and V. I. Kovalenko, Rift-Related Magmatism of Active Continental Margins and Its Ore Potential (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  42. T. T. Alapiety, B. A. Filen, J. J. Lahtinen, et al., “Early Proterozoic Layered Intrusions in the Northeastern Part of the Fennoscandian Shield,” Mineral. Petrol. 42, 1–22 (1990).

    Article  Google Scholar 

  43. N. L. Alexeyev, E. V. Salnikova, and S. V. Klepinin, “Tectonic and P-T-Time Evolution of the Kolvitsa-Umba Collision Zone,” in Abstracts of the SVEKALAPKO Workshop, 27–30.11.1997 (Lammi, 1997), Vol. 8, p. 4.

    Google Scholar 

  44. F. F. M. de Almeida, B. B. de Neves Brito, and C. D. M. Carneiro, “The Origin and Evolution of the South American Platform,” Earth-Sci. Rev. 50, 77–111 (2000).

    Article  Google Scholar 

  45. Y. V. Amelin, L. M. Heamen, and V. S. Semenov, “U-Pb Geochronology of Layered Mafic Intrusions in the Eastern Baltic Shield: Implication for the Timing and Duration of Palaeoproterozoic Continental Rifting,” Precambr. Res. 75(1/2), 31–46 (1995).

    Article  Google Scholar 

  46. M. Asami, K. Suzuki, and E. S. Grew, “Chemical Th-U-Total Pb Dating by Electron Microprobe Analysis of Monazite, Xenotime and Zircon from the Archaean Napier Complex, East Antarctica: Evidence for Ultrahigh-Temperature Metamorphism at 2400 Ma,” Precambr. Res. 114, 249–275 (2002).

    Article  Google Scholar 

  47. D. J. Baird, K. D. Nelson, J. H. Knapp, et al., “Crustal Structure and Evolution of the Trans-Hudson Orogen: Results from Seismic Reflection Profiling,” Tectonics 15(2), 416–426 (1996).

    Article  Google Scholar 

  48. V. V. Balagansky, M. J. Timmerman, N. E. Kozlova, and R. V. Kislitsyn, “A 2.44 Ga Syn-Tectonic Mafic Dyke Swarm in the Kolvitsa Belt, Kola Peninsula, Russia: Implications for Early Palaeoproterozoic Tectonics in the Northeastern Fennoscandian Shield,” Precambr. Res. 105, 269–287 (2001).

    Article  Google Scholar 

  49. M. E. Barle, A. Bekker, and B. Krapez, “Late Archean to Early Paleoproterozoic Global Tectonics, Environmental Change and the Rise of Atmospheric Oxygen,” Earth Planet. Sci. Lett. 238, 156–171 (2005).

    Article  Google Scholar 

  50. B. Beddoe-Stephens and I. Mason, “The Volcanogenetic Significance of Garnet-Bearing Minor Intrusions within the Borrowdale Volcanic Group, Eckdale Area, Cumbria,” Geol. Mag. 128(5), 505–516 (1991).

    Google Scholar 

  51. J. Bernard-Griffiths, J. J. Peucat, B. Postaire, et al., “Isotopic Data (U-Pb, Rb-Sr, Pb-Pb, and Sm-Nd) on Mafic Granulites from Finnish Lapland,” Precambr. Res. 23, 325–348 (1984).

    Article  Google Scholar 

  52. S. V. Bogdanova, “Segments of the East European Craton,” in EUROPROBE in Jablonna, 1991, Institute of Geophysics, Polish Academy of Sciences, Ed. by D. G. Gee and M. Beckholmen (Eur. Sci. Foundation, Warszawa, 1993), pp. 33–38.

    Google Scholar 

  53. S. V. Bogdanova, “High-Grade Metamorphism of 2.44–2.4 Ga Age in Mafic Intrusions of the Belomorian Belt in the Northeastern Baltic Shield,” Geol. Soc. Spec. Publ. 112, 69–90 (1996).

    Google Scholar 

  54. S. V. Bogdanova, E. V. Bibikova, and A. V. Postnikov, “A Remnant of the Palaeoproterozoic Magmatic Arc Beneath Moscow,” in Early Precambrian: Genesis and Evolution of the Continental Crust Geodynamics, Petrology, Geochronology, and Regional Geology, Ed. by Yu. V. Kariakin and M. V. Mints (GEOS, Moscow, 1999), pp. 23–24.

    Google Scholar 

  55. S. V. Bogdanova, R. Gorbatschev, and R. A. Stephenson, “EUROBRIDGE: Palaeoproterozoic Accretion of Fennoscandia and Sarmatia,” Tectonophysics 339, VII–X (2001).

    Article  Google Scholar 

  56. S. V. Bogdanova, L. M. Page, G. Skridlaite, and L. N. Taran, “Proterozoic Tectonothermal History in the Western Part of the East European Craton: 40Ar/39Ar Geochronological Constraints,” Tectonophysics 339, 39–66 (2001).

    Article  Google Scholar 

  57. J. Y. Bradshaw, “Early Cretaceous Vein Related Garnet Granulite in Fiordland, Southwest New Zealand: A Case for Infiltration of Mantle-Derived CO2-Rich Fluids,” J. Geol. 97, 697–717 (1989).

    Article  Google Scholar 

  58. D. Bridgwater, D. J. Scott, V. V. Balagansky, et al., “Age and Provenance of Early Precambrian Metasedimentary Rocks in the Lapland-Kola Belt, Russia: Evidence from Pb and Nd Isotopic Data,” Terra Nova 13(1), 32–37 (2001).

    Article  Google Scholar 

  59. K. L. Buchan, H. C. Halls, and J. K. Mortensen, “Paleomagnetism, U-Pb Geochronology and Geochemistry of Marathon Dykes, Superior Province, and Comparison with the Fort Frances Swarm,” Can. J. Earth Sci. 33, 1583–1595 (1996).

    Google Scholar 

  60. K. L. Buchan, S. Mertanen, R. G. Park, et al., “Comparing the Drift of Laurentia and Baltica in the Proterozoic: the Importance of Key Paleomagnetic Poles,” Tectonophysics 319, 167–198 (2000).

    Article  Google Scholar 

  61. T. Chacko, R. A. Creaser, and D. Poon, “Spinel + Quartz Granites and Associated Metasedimentary Enclaves from the Taltson Magmatic Zone. Alberta, Canada: A View into a Root Zone of a High Temperature S-Type Granite Batholith,” Mineral. Mag., No. 8A, 161–162 (1994).

  62. T. Chacko, S. K. De, R. A. Creaser, and K. Muehlenbachs, “Tectonic Setting of the Taltson Magmatic Zone at 1.9–2.0 Ga: A Granitoid-Based Perspective,” Can. J. Earth Sci. 37, 1597–1609 (2000).

    Article  Google Scholar 

  63. S. Claesson, S. V. Bogdanova, E. V. Bibikova, and R. Gorbatschev, “Isotopic Evidence for Palaeoproterozoic Accretion in the Basement of the East European Craton,” Tectonophysics 339, 1–18 (2001).

    Article  Google Scholar 

  64. K. C. Condie, “Growth and Accretion of Continental Crust: Inferences Based on Laurentia,” Chem. Geol. 83, 183–194 (1990).

    Article  Google Scholar 

  65. K. C. Condie, “Greenstones through Time,” in Archean Crustal Evolution, Ed. by K. C. Condie (Elsevier, Amsterdam, 1994), pp. 85–120.

    Google Scholar 

  66. K. C. Condie, “Episodic Continental Growth and Supercontinents: A Mantle Avalanche Connection?” Earth Planet. Sci. Lett. 163, 97–108 (1998).

    Article  Google Scholar 

  67. K. C. Condie, “Breakup of a Palaeoproterozoic Supercontinent,” Gondwana Research 5(1), 41–43 (2002).

    Article  Google Scholar 

  68. F. Corfu and R. M. Easton, “U-Pb Evidence for Polymetamorphic History of Huronian Rocks within the Grenville Front Tectonic Zone East of Sudbury, Ontario, Canada,” Chem. Geol. 172, 149–171 (2000).

    Article  Google Scholar 

  69. J. S. Daly, V. V. Balagansky, M. J. Timmerman, et al., “Ion Microprobe U-Pb Zircon Geochronology and Isotopic Evidence for a Trans-Crustal Suture in the Lapland-Kola Orogen, Northern Fennoscandian Shield,” Precambr. Res. 105, 289–314 (2001).

    Article  Google Scholar 

  70. S. K. De, T. Chacko, R. A. Creaser, and K. Muehlenbachs, “Geochemical and Nd-Pb-O Isotope Systematics of Granites from the Taltson Magmatic Zone, NE Alberta: Implications for Early Proterozoic Tectonics in Western Laurentia,” Precambr. Res. 102, 221–249 (2000).

    Article  Google Scholar 

  71. P. C. England and A. B. Thompson, “Pressure-Temperature-Time Paths of Regional Metamorphism: 1. Heat Transfer during the Evolution of Regions of Thickened Continental Crust,” J. Petrol. 25, 894–928 (1984).

    Google Scholar 

  72. P. G. Eriksson, R. Mazumder, S. Sarkar, et al., “The 2.7–2.0 Ga Volcano-Sedimentary Record of Africa, India and Australia: Evidence for Global and Local Changes in Sea Level and Continental Freeboard,” Precambr. Res. 97, 269–302 (1999).

    Article  Google Scholar 

  73. R. E. Ernst and K. L. Buchan, “Maximum Size and Distribution in Time and Space of Mantle Plumes: Evidence from Large Igneous Provinces,” J. Geodynamics 34, 309–342 (2002).

    Article  Google Scholar 

  74. J. Farquar, T. Chacko, and D. J. Ellis, “Preservation of Oxygen Isotope Compositions in Granulites from Northwestern Canada and Enderby Land, Antarctica: Implications for High-Temperature Isotopic Thermometry,” Contrib. Mineral. Petrol. 125, 213–224 (1996).

    Article  Google Scholar 

  75. G. Gaal, “Global Proterozoic Tectonic Cycles and Early Proterozoic Metallogeny,” South Africa J. Geol. 95(3), 79–87 (1992).

    Google Scholar 

  76. G. Gaal and R. Gorbatschev, “An Outline of the Precambrian Evolution of the Baltic Shield,” Precambr. Res. 35, 15–52 (1987).

    Article  Google Scholar 

  77. M. G. Gala, D. T. A. Symons, and H. C. Palmer, “Geotectonics of the Hanson Lake Block, Trans-Hudson Orogen, Central Canada: A Preliminary Paleomagnetic Report,” Precambr. Res. 90, 85–101 (1998).

    Article  Google Scholar 

  78. G. M. Gibson and T. R. Ireland, “Granulite Formation during Continental Extension on Fiordland, New Zealand,” Nature 375, 479–482 (1995).

    Article  Google Scholar 

  79. G. M. Gibson and T. R. Ireland, “Black Giants Anorthosite, New Zealand: A Paleozoic Analogue of Archean Stratiform Anorthosite and Implications for the Formation of Archean High-Grade Terranes,” Geology 27(2), 131–134 (1999).

    Article  Google Scholar 

  80. V. Glebovitsky, N. Alexejev, M. Marker, et al., “Age, Evolution and Regional Setting of the Palaeoproterozoic Umba Igneous Suite in the Kolvitsa-Umba Zone, Kola Peninsula: Constraints from New Geological, Geochemical and U-Pb Zircon Data,” Precambr. Res. 105(2–4), 247–268 (2001).

    Article  Google Scholar 

  81. S. P. Goff, J. D. Godfrey, and J. G. Holland, “Geochemistry of the Canadian Shield of Northeastern Alberta,” Alberta Res. Council, Edmonton Bull. 51, 1–60 (1986).

    Google Scholar 

  82. R. Gorbatschev and S. Bogdanova, “Frontiers in the Baltic Shield,” Precambr. Res. 64, 3–21 (1993).

    Article  Google Scholar 

  83. H. C. Halls and L. M. Heaman, “The Paleomagnetic Significance of New U-Pb Age Data from the Molson Dyke Swarm, Cauchon Lake Area, Manitoba,” Can. J. Earth Sci. 37, 957–966 (2000).

    Article  Google Scholar 

  84. E. J. Hanski, H. Huhma, M. I. Lehtonen, and P. Rastas, “2.0 Ga Old Oceanic Crust in Northern Finland,” in Proceedings of International Ophiolite Symposium and Field Excursion, Ed. by E. Hanski and J. Vuollo (Geol. Surv. Finland Spec. Paper, Espoo, 1998), Vol. 26, p. 24.

    Google Scholar 

  85. S. L. Harley, “The Origin of Granulites: A Metamorphic Perspective,” Geol. Mag. 126, 215–247 (1989).

    Google Scholar 

  86. S. L. Harley, “Proterozoic Granulite Terranes,” in Proterozoic Crustal Evolution, Ed. by K. C. Condie (Elsevier, Amsterdam, 1992), pp. 301–359.

    Google Scholar 

  87. S. L. Harley, “An Appraisal of Peak Temperatures and Thermal Histories in Ultrahigh-Temperature (UHT) Crustal Metamorphism: The Significance of Aluminous Orthopyroxene,” in Proceedings of International Symposium on Origin and Evolution of Continents, Ed. by Y. Motoyoshi and K. Shiraishi (Mem. Nat. Inst. Polar Res. Spec. Issue, Tokyo, 1998), Vol. 53, pp. 49–73.

    Google Scholar 

  88. L. M. Heaman, “Global Mafic Magmatism at 2.45 Ga: Remnants of an Ancient Large Igneous Province?” Geology 25, 299–302 (1997).

    Article  Google Scholar 

  89. P. F. Hoffman, “Precambrian Geology and Tectonic History of North America: An Overview,” in The Geology of North America, Ed. by A. W. Bally and A. R. Palmer (Geol. Soc. Amer., 1989), Vol. A, pp. 447–512.

  90. P. Holtta, “Metamorphic Zones and Evolution of Granulite Grade Metamorphism in the Early Proterozoic Pielavesi Area, Central Finland,” Geol. Surv. Finland Bull. 344, 1–50 (1998).

    Google Scholar 

  91. H. Huhma and K. Merilainen, “Provenance of Paragneisses from the Lapland Granulite Belt,” in Res. Terrae (Univ. Oulu, Finland, 1991), Ser. A, Vol. 5, p. 26.

    Google Scholar 

  92. G. D. Jackson and R. G. Berman, “Precambrian Metamorphism and Tectonic Evolution of Northern Baffin Island, Nunavut, Canada,” Can. Mineral. 38, 399–421 (2000).

    Article  Google Scholar 

  93. F. Kalsbeek and A. P. Nutman, “Anatomy of the Early Proterozoic Nagssugtoqidian Orogen, West Greenland, Explored by Reconnaissance SHRIMP U-Pb Dating,” Geology 24, 515–518 (1996).

    Article  Google Scholar 

  94. F. Kalsbeek, T. C. R. Pulvertaft, and A. P. Nutman, “Geochemistry, Age, and Origin of Metagreywackes from the Palaeoproterozoic Karrat Group, Rinkian Belt, West Greenland,” Precambr. Res. 91, 383–399 (1998).

    Article  Google Scholar 

  95. T. V. Kaulina, O. A. Belyaev, and E. A. Apanasevich, “Multistage Metamorphic History of the Lapland Gran ulite and the Tanaelv Belts: U-Pb, Sm-Nd, and Rb-Sr Data (NE Baltic Shield),” in Proceeding of International Conference on Precambrian Continental Growth and Tectonism (PCGT-2005) (Ihansi, India, 2005), pp. 267–271.

  96. P. D. Kempton, H. Downes, L. A. Neymark, et al., “Garnet Granulite Xenoliths from the Northern Baltic Shield as the Underplated Lower Crust of a Palaeoproterozoic Large Igneous Province?,” J. Petrol. 42(4), 731–763 (2001).

    Article  Google Scholar 

  97. P. D. Kempton, H. Downes, E. V. Sharkov, et al., “Petrology and Geochemistry of Xenoliths from the Northern Baltic Shield: Evidence for Partial Melting and Metasomatism in the Lower Crust Beneath an Archean Terrane,” Lithos 36, 157–184 (1995).

    Article  Google Scholar 

  98. R. V. Kislitsyn, V. V. Balagansky, I. Manttari, et al., “Age of Accretion and Collision in the Palaeoproterozoic Lapland-Kola Orogen: New Isotope Evidence from the Kolvitsa Belt and Umba Granulite Terrane,” in Abstracts of SVEKALAPKO, an Europrobe Project (Oulu, 1999).

  99. V. I. Kitsul, V. A. Glebovitsky, Ye. A. Vapnic, and T. Frisch, “Gneisses from the Granulite Terrane of the Central Boothia Uplift, Arctic Canada,” Can. Mineral. 38, 443–454 (2000).

    Article  Google Scholar 

  100. A. Kontinen, “An Early Proterozoic Ophiolite: The Jormua Mafic-Ultramafic Complex, Northeastern Finland,” Precambr. Res. 35(1), 313–341 (1987).

    Article  Google Scholar 

  101. K. Korsman, T. Korja, M. Pajunen, and P. Virransalo, “GGT/SVEKA Working Group. The GGT/SVEKA Transect: Structure and Evolution of the Continental Crust in the Palaeoproterozoic Svecofennian Orogen in Finland,” Intern. Geol. Rev. 41, 287–333 (1999).

    Article  Google Scholar 

  102. D. Martin, C. Powel, and A. D. George, “Stratigraphic Architecture and Evolution of the Early Palaeoproterozoic McGrath Trough, Western Australia,” Precambr. Res. 99, 33–64 (2000).

    Article  Google Scholar 

  103. M. R. McDonough, V. J. McNicoll, and E. M. Schetselaar, “Age and Kinematics of Crustal Shortening and Escape in a Two-Sided Oblique Slip Collisional and Magmatic Orogen, Proterozoic Taltson Magmatic Zone, Northeastern Alberta,” in Alberta Basement Transects Workshop, Lithoprobe Report, No. 47, Ed. by G. M. Ross (LITHOPROBE Secretariat, Univ. British Columbia, 1995), pp. 264–239.

  104. V. A. Melezhik and B. F. Sturt, “General Geology and Evolutionary History of the Early Proterozoic Polmak-Pasvik-Pechenga-Imandra-Varzuga-Ust’-Ponoy Greenstone Belt in the Northeastern Baltic Shield,” Earth Sci. Rev. 36, 205–241 (1994).

    Article  Google Scholar 

  105. S. Mertanen, H. C. Halls, J. L. Vuollo, et al., “Paleomagnetism of 2.44 Ga Mafic Dykes in Russian Karelia, Eastern Fennoscandian Shield as Implications for Continental Reconstructions,” Precambr. Res. 98, 197–221 (1999).

    Article  Google Scholar 

  106. M. V. Mints, “The Correlation between the Palaeoproterozoic Orogens and Granulite Belts in the Baltic Shield and North America Craton: A Suggested Model of Palaeoproterozoic Plate Tectonics,” Gondwana Res. 1, 235–246 (1998).

    Article  Google Scholar 

  107. M. V. Mints, T. V. Kaulina, A. N. Konilov, et al., “The Thermal and Geodynamic Evolution of the Lapland Granulite Belt: Implications for the Thermal Structure of the Lower Crust during Granulite-Facies Metamorphism,” Gondwana Res. (in press).

  108. M. V. Mints and A. N. Konilov, “Thermal Structure of the Crust during Granulite Metamorphism: Petrological Speculations and Geodynamic Implications,” in Proceedings of International Symposium on Origin and Evolution of Continents, Ed. by Y. Motoyoshi and K. Shiraishi (Mem. Nat. Inst. Polar Res. Spec. Issue, Tokyo, 1998), Vol. 53, pp. 137–156.

    Google Scholar 

  109. M. V. Mints and A. N. Konilov, “Geodynamic Crustal Evolution and Long-Lived Supercontinents during the Paleoproterozoic: Evidence from Granulite Belts, Collisional and Accretionary Orogens,” in The Precambrian Earth: Tempos and Events. Series 12, Developments in Precambrian Geology (Elsevier, Amsterdam, 2004), pp. 223–239.

    Google Scholar 

  110. F. P. Mitrofanov, V. V. Balagansky, Y. A. Balashov, et al., “U-Pb Age of Gabbro-Anorthosite Massifs in the Lapland Granulite Belt,” Nor. Geol. Unders. Spec. Publ. 7, 179–183 (1995).

    Google Scholar 

  111. F. P. Mitrofanov and T. B. Bayanova, “Duration and Timing of Ore-Bearing Palaeoproterozoic Intrusions of Kola Province,” in Mineral Deposits: Processes to Processing, Ed. by C. R. Stanley et al. (Balkema, Rotterdam, 1999), pp. 1275–1278.

    Google Scholar 

  112. A. P. Nutman, F. Kalsbeek, M. Marker, et al., “U-Pb Zircon Ages of Kangamiut Dykes and Detrital Zircons in Metasediments in the Palaeoproterozoic Nagssugtoqidian Orogen (West Greenland). Clues to the Precollisional History of the Orogen,” Precambr. Res. 93, 87–104 (1999).

    Article  Google Scholar 

  113. J. A. Percival and G. F. West, “The Kapuskasing Uplift: A Geological and Geophysical Synthesis,” Can. J. Earth Sci. 31, 1256–1286 (1994).

    Article  Google Scholar 

  114. T. C. Pharaoh and T. S. Brewer, “Spatial and Temporal Diversity of Early Proterozoic Volcanic Sequences-Comparisons between the Baltic and Laurentian Shields,” Precambr. Res. 47, 169–189 (1990).

    Article  Google Scholar 

  115. C. Picard, D. Giovenazzo, and D. Lamothe, “Geotectonic Evolution by Asymmetric Rifting of the Proterozoic Cape Smith Belt, New Quebec,” Geosci. Canada 16(3), 130–133 (1989).

    Google Scholar 

  116. J. D. A. Piper, “Proterozoic Palaeomagnetism and Single Continent Plate Tectonics,” Geophys. J. Roy. Astr. Soc. 74, 163–197 (1983).

    Google Scholar 

  117. Proterozoic Crustal Evolution, Ed. by K. C. Condie (Elsevier, Amsterdam, 1992).

    Google Scholar 

  118. I. S. Puchtel, N. T. Arndt, A. W. Hofmann, et al., “Petrology of Mafic Lavas within Onega Plateau, Central Karelia: Evidence for 2.0 Ga Plume-Related Continental Crustal Growth in the Baltic Shield,” Contrib. Mineral. Petrol. 130, 134–153 (1998).

    Article  Google Scholar 

  119. I. S. Puchtel, A. W. Hofmann, K. Mezger, et al., “Petrology of a 2.41 Ga Remarkably Fresh Komatiitic Basalt Lava Lake in Lion Hills, Central Vetreny Belt, Baltic Shield,” Contrib. Mineral. Petrol. 124, 273–290 (1996).

    Article  Google Scholar 

  120. M. Raith, C. Srikantappa, K. G. Ashamanjar, and B. Spiering, “The Granulite Terrane of the Nilgiri Hills (Southern India): Characterization of High-Grade Metamorphism,” in Granulites and Crustal Evolution, Ed. by D. Vielzeuf and Ph. Vidal (Kluwer, Dordrecht, 1990), pp. 339–365.

    Google Scholar 

  121. M. M. Raith, C. Srikantappa, D. Buhl, and H. Koeler, “The Nilgiri Enderbites, South India: Nature and Age Constraints on Protolith Formation, High-Grade Metamorphism and Cooling History,” Precambr. Res. 98, 129–150 (1999).

    Article  Google Scholar 

  122. J. J. W. Rogers, “A History of the Continents in the Past Three Billion Years,” J. Geol. 104, 91–107 (1996).

    Article  Google Scholar 

  123. O. M. Rosen, K. C. Condie, L. M. Natapov, and A. D. Nozhkin, “Archean and Early Proterozoic Evolution of the Siberian Craton: A Preliminary Assessment,” in Archean Crustal Evolution, Ed. by K. C. Condie (Elsevier, Amsterdam, 1994), pp. 411–459.

    Google Scholar 

  124. G. M. Ross and D. W. Eaton, “Proterozoic Tectonic Accretion and Growth of Western Laurentia: Results from Lithoprobe Studies in Northern Alberta,” Can. J. Earth Sci. 39, 313–329 (2002).

    Article  Google Scholar 

  125. G. M. Ross, R. S. Parrish, M. E. Villeneuve, and S. A. Bowring, “Geophysics and Geochronology of the Crystalline Basement of the Alberta Basin, Western Canada,” Can. J. Earth Sci. 28, 512–522 (1991).

    Google Scholar 

  126. R. L. Rudnick and D. M. Fountain, “Nature and Composition of the Continental Crust: A Lower Crustal Perspective,” Rev. Geophys. 33, 267–309 (1995).

    Article  Google Scholar 

  127. M. Sandiford, “Horizontal Structures in Granulite Terrain: A Record of Mountain Building or Mountain Collapse?,” Geology 17, 449–452 (1989).

    Article  Google Scholar 

  128. D. J. Scott, “U-Pb Geochronology of the Eastern Hall Peninsula, Southern Baffin Island, Canada: A Northern Link between the Archean of West Greenland and the Palaeoproterozoic Torngat Orogen of Northern Labrador,” Precambr. Res. 93, 5–26 (1999).

    Article  Google Scholar 

  129. D. J. Scott, M. R. St.-Onge, S. B. Lucas, and H. Helmstaedt, “Geology and Geochemistry of the Early Proterozoic Purtuniq Ophiolite, Cape Smith Belt, Northern Quebec, Canada,” in Ophiolite Genesis and Evolution of the Oceanic Lithosphere, Ed. by T. Peters et al. (Kluwer, Amsterdam, 1991), pp. 817–849.

    Google Scholar 

  130. G. Scridlaite and G. Motuza, “Precambrian Domains in Lithuania: Evidence of Terrane Tectonics,” Tectonophysics 339, 113–133 (2001).

    Article  Google Scholar 

  131. E. V. Sharkov and V. F. Smolkin, “The Early Proterozoic Pechenga-Varzuga Belt: A Case of Precambrian Back-Arc Spreading,” Precambr. Res. 82, 133–151 (1997).

    Article  Google Scholar 

  132. R. D. Smith, K. L. Cameron, F. W. McDowell, et al., “Generation of Voluminous Felsic Magmas and Formation of Mid-Cenozoic Crust Beneath North-Central Mexico: Evidence from Ignimbrites, Associated Lavas, Deep Crustal Granulites, and Mantle Pyroxenites,” Contrib. Mineral. Petrol. 123, 375–389 (1996).

    Article  Google Scholar 

  133. R. L. Smith, “Ash Flow Magmatism,” Geol. Soc. Am. Spec. Paper 180, 5–27 (1979).

    Google Scholar 

  134. S. B. Smithson, F. Wenzel, Y. V. Ganchin, and I. V. Morozov, “Seismic Results at Kola and KTB Deep Scientific Boreholes: Velocities, Reflections, Fluids, and Crustal Composition,” Tectonophysics 329, 301–317 (2000).

    Article  Google Scholar 

  135. P. Sorjonen-Ward, J. Claue-Long, and H. Huhma, “SHRIMP Isotope Studies of Granulite Zircons and Their Relevance to Early Proterozoic Tectonics in Northern Fennoscandia,” in US Geol. Surv. Circular 1107, ICOG 8, Abstracts (1994), p. 299.

  136. R. A. Stern and S. B. Lukas, “U-Pb Zircon Age Constraints on the Early Tectonic History of the Flin Flon Accretionary Collage, Saskatchewan,” in Radiogenic Age and Isotopic Studies, Report 8, Current Research (Geol. Surv. Can., 1994), pp. 75–86.

  137. M. R. St-Onge, S. B. Lukas, D. J. Scott, and N. Wodichka, “Upper and Lower Plate Juxtaposition, Deformation and Metamorphism during Crustal Convergence, Trans-Hudson Orogen (Quebec-Baffin Segment), Canada,” Precambr. Res. 93, 27–49 (1999).

    Article  Google Scholar 

  138. A. N. Sutton, S. Blake, C. J. N. Wilson, and B. L. A. Charlier, “Late Quaternary Evolution of a Hyperactive Rhyolite Magmatic System: Taupo Volcanic Center, New Zealand,” J. Geol. Soc. London 157, 537–552 (2000).

    Article  Google Scholar 

  139. D. T. A. Symons and M. J. Harris, “The ∼1830 Ma Trans-Hudson Hairpin from Paleomagnetism of the Wapisu Gneiss Dome, Kisseynew Domain, Manitoba,” Can. J. Earth Sci. 37, 913–922 (2000).

    Article  Google Scholar 

  140. L. N. Taran and S. V. Bogdanova, “The Fennoscandia-Sarmatia Junction in Belarus: New Inferences from a P-T-Study,” Tectonophysics 339, 193–214 (2001).

    Article  Google Scholar 

  141. P. N. Taylor and F. Kalsbeek, “Dating the Metamorphism of Precambrian Marbles: Examples from Proterozoic Mobile Belts in Greenland,” Chem. Geol. 86, 21–28 (1990).

    Google Scholar 

  142. W. Teixeira, P. Sabate, J. Barbosa, et al., “Archaean and Palaeoproterozoic Tectonic Evolution of the São Francisco Craton, Brazil,” in Tectonic Evolution of the South America, Ed. by U. G. Gordani, E. J. Milani, A. Thomaz Filho, and D. A. Campos (Rio de Janeiro, 2000), pp. 101–137.

  143. A. B. Thompson and J. R. Ridley, “Pressure-Temperature-Time (P-T-t) Histories of Orogenic Belts,” Phil. Trans. Roy. Soc., London A321, 27–45 (1987).

    Article  Google Scholar 

  144. P. H. Thompson, Proterozoic Evolution of the Northern Thelon Tectonic Zone (PhD Thesis, Princeton Univ., Princeton, New Jersey, 1992) (Cited from Kitsul at al., 2000).

    Google Scholar 

  145. D. J. Thorkelson, J. K. Mortensen, R. A. Creaser, et al., “Early Proterozoic Magmatism in Yukon, Canada: Constraints on the Evolution of Northwestern Laurentia,” Can. J. Earth Sci. 38, 1479–1494 (2001).

    Article  Google Scholar 

  146. J. L. R. Touret and T. H. D. Hartel, “Synmetamorphic Fluid Inclusions in Granulites,” in Granulites and Crustal Evolution, Ed. by D. Vielzeuf and Ph. Vidal (Kluwer, 1990), pp. 397–417.

  147. P. Tuisku and H. Huhma, “Geochronology of Lapland Granulite Belt and Implications for the Fennoscandian Assembly: The Architecture and Evolution of the Palaeoproterozoic Lapland-Kola Orogen,” in Abstracts of SVEKALAPKO, an Europrobe Project (Oulu, 1999).

  148. M. J. Van Kranendon, “Tectonic Evolution of the Palaeoproterozoic Torngat Orogen: Evidence from Pressure-Temperature-Time-Deformation Paths in the North River Map Area, Labrador,” Tectonics 15(4), 843–869 (1996).

    Article  Google Scholar 

  149. D. C. Vogel, J. I. Vuollo, T. T. Alapieti, and R. S. James, “Tectonic, Stratigraphic and Geochemical Comparisons between ca. 2500–2440 Ma Mafic Igneous Events in the Canadian and Fennoscandian Shields,” Precambr. Res. 92, 89–116 (1998).

    Article  Google Scholar 

  150. J. Vuollo, Palaeoproterozoic Basic Igneous Events in Eastern Fennoscandian Shield between 2.45 and 1.97 Ga (Acta Univ., Oulu, 1994), Vol. A250.

    Google Scholar 

  151. J. Wei, “The Late Palaeoproterozoic Orogeny in the North China Craton,” Gondwana Res. 5(1), 95–99 (2002).

    Article  Google Scholar 

  152. D. J. White, A. G. Jones, S. B. Lucas, and Z. Hajnal, “Tectonic Evolution of the Superior Boundary Zone from Coincident Seismic Reflection and Magnetotelluric Profiles,” Tectonics 18(3), 430–451 (1999).

    Article  Google Scholar 

  153. B. Windley, “Proterozoic Collisional and Accretionary Orogens,” in Proterozoic Crustal Evolution, Ed. by K. C. Condie (Elsevier, Amsterdam, 1992), pp. 419–446.

    Google Scholar 

  154. V. L. Zlobin, O. M. Rosen, and A. A. Abbyasov, “Two Metasedimentary Basins in the Early Precambrian Granulites of the Anabar Shield (Polar Siberia): Normative Mineral Compositions Calculated by the MINLITH Program and Basin Facies Interpretations,” Spec. Pub. Int. Ass. Sediment 33, 275–291 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Mints.

Additional information

Original Russian Text © M.V. Mints, 2007, published in Geotektonika, 2007, No. 4, pp. 3–29.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mints, M.V. Paleoproterozoic supercontinent: Origin and evolution of accretionary and collisional orogens exemplified in Northern cratons. Geotecton. 41, 257–280 (2007). https://doi.org/10.1134/S0016852107040012

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852107040012

Keywords

Navigation