Skip to main content
Log in

The Depths to Lithospheric Magnetic Sources under the Baltic Shield

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

We present the results of studying the depths to lithospheric magnetic sources under the Baltic Shield and adjacent territories of the Russian Plate and the Scandinavian Caledonides. The depths have been calculated from the global model of the lithospheric geomagnetic field EMAG2v3 by the centroid method. The minimum depths of the lower boundary of the lithospheric magnetically active layer (30–35 km) were obtained under the frame of the Baltic Shield, that is, the Russian Plate, the northern and southern parts of the Scandinavian Caledonides, the maximum (>45 km), under the Scandinavian Peninsula, in the west of the Svecofennian orogen and the Norrbotten craton. The rest of the territory of the Baltic Shield is characterized by intermediate depths (38–45 km). Based on a comparison of our estimates of the depth of the lower boundary of lithospheric magnetic sources with the currently available models of the distribution of the Moho depth under the study area, it can be seen that for most of the Baltic Shield, the magnetically active layer of the lithosphere is located within the crust, with the exception of two areas under the Svecofennian orogen and the eastern part of the Kola Peninsula. This fact supports the hypothesis that the upper mantle has magnetic properties in regions where positive long-wave anomalies of the geomagnetic field are observed at satellite altitudes. The obtained results show that the western and eastern parts of the Kola Peninsula can differ not only in the velocity structure of the crust and upper mantle, which has been previously established by various seismological methods, but also in the magnetic properties of the upper mantle layer located directly under the crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Adushkin, V.V., Goev, A.G., Sanina, I.A., and Fedorov, A.V., The deep velocity structure of the Central Kola Peninsula obtained using the receiver function technique, Dokl. Earth Sci., 2021, vol. 501, no. 2, pp. 1049–1051. https://doi.org/10.1134/S1028334X21120011

    Article  Google Scholar 

  2. Andrés, J., Marzán, I., Ayarza, P., Martí, D., Palomeras, I., Torné, M., Campbell, S., and Carbonell, R., Curie point depth of the Iberian Peninsula and surrounding margins. A thermal and tectonic perspective of its evolution, J. Geophys. Res.: Solid Earth, 2018, vol. 123, pp. 2049–2068. https://doi.org/10.1002/2017JB014994

    Article  Google Scholar 

  3. Artemieva, I.M., Lithosphere structure in Europe from thermal isostasy, Earth Sci. Rev., 2019, vol. 188, pp. 454–468. https://doi.org/10.1016/j.earscirev.2018.11.004

    Article  Google Scholar 

  4. Artemieva, I.M. and Thybo, H., EUNAseis: A seismic model for Moho and crustal structure in Europe, Greenland, and the North Atlantic region, Tectonophysics, 2013, vol. 609, pp. 97–153. 2013. https://doi.org/10.1016/j.tecto.2013.08.004.

  5. Bansal, A.R., Anand, S.P., Rajaram, M., Rao, V.K., and Dimri, V.P., Depth to the bottom of magnetic sources (DBMS) from aeromagnetic data of Central India using modified centroid method for fractal distribution of sources, Tectonophysics, 2013, vol. 603, pp. 155–161. https://doi.org/10.1016/j.tecto.2013.05.024

    Article  Google Scholar 

  6. Bouligand, C., Glen, J.M.G., and Blakely, J., Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization, J. Geophys. Res., 2009, vol. 114, p. B11104. https://doi.org/10.1029/2009JB006494

    Article  Google Scholar 

  7. Bulina, L.V., Characteristic features of the distribution of lower edges for the USSR territory, in Magnitnye anomalii zemnykh glubin (Magnetic Anomalies of the Earth’s Depths), Subbotin, S.I., Ed., Kiev: Naukova dumka, 1976, pp. 137–151.

  8. Cammarano, F. and Guerri, M., Global thermal models of the lithosphere, Geophys. J. Int., 2017, vol. 210, pp. 56–72. https://doi.org/10.1093/gji/ggx144

    Article  Google Scholar 

  9. Fedorova, N.V., Sources of the satellite geomagnetic anomalies in North Eurasia, Izv., Phys. Solid Earth, 1997, vol. 33, no. 8, pp. 613–618.

    Google Scholar 

  10. Ferré, E.C., Friedman, S.A., Martin-Hernández, F., Feinberg, J.M., Till, J.L., Ionov, D.A., and Conder, J.A., Eight good reasons why the uppermost mantle could be magnetic, Tectonophysics, 2014, vol. 624–625, pp. 3–14. https://doi.org/10.1016/j.tecto.2014.01.004

    Article  Google Scholar 

  11. Filippova, A.I. and Filippov, S.V., Depths to lithospheric magnetic sources and lithospheric thermal regime under the East Siberian Sea, Izv., Phys. Solid Earth, 2022a, vol. 58, no. 4, pp. 507–519. https://doi.org/10.1134/S1069351322040036

    Article  Google Scholar 

  12. Filippova, A.I. and Filippov, S.V., The depths to the lithospheric magnetic sources along the Kovdor–GSZ-76 profile (Baltic Shield–Barents Sea), Geomagn. Aeron. (Engl. Transl.), 2022b, vol. 62, no. 6, pp. 767–778. https://doi.org/10.1134/S0016793222060044

  13. Filippova, A.I. and Solovey, O.A., Surface wave tomography of the Kola Peninsula and adjacent territories: Data on dispersion of group velocities of Rayleigh and Love waves, Dokl. Earth Sci., 2022, vol. 504, no. 2, pp. 380–384. https://doi.org/10.1134/S1028334X2206006X

    Article  Google Scholar 

  14. Filippova, A.I., Golubev, V.A., and Filippov, S.V., Curie point depth and thermal state of the lithosphere beneath the northeastern flank of the Baikal rift zone and adjacent areas, Surv. Geophys., 2021, vol. 42, no. 5, pp. 1143–1170. https://doi.org/10.1007/s10712-021-09651-7

    Article  Google Scholar 

  15. Fuchs, S., Norden, B., Artemieva, I., et al., The global heat flow data-base: Release, GFZ Data Services, 2021a. https://doi.org/10.5880/fidgeo.2021.014.

  16. Fuchs, S., Beardsmore, G., Chiozzi, P., et al., A new database structure for the IHFC global heat flow database, Int. J. Terr. Heat Flow Appl. Geotherm., 2021b, vol. 4, no. 1, pp. 1–14. https://doi.org/10.31214/ijthfa.v4i1.62

    Article  Google Scholar 

  17. Gaina, C., Werner, S.C., Saltus, R., et al., Circum-Arctic mapping project: New magnetic and gravity anomaly maps of the Arctic, Geol. Soc. London Mem., 2011, vol. 35, pp. 39–48. https://doi.org/10.1144/M35.3

    Article  Google Scholar 

  18. Gard, M. and Hasterok, D., A global Curie depth model utilizing the equivalent source magnetic dipole method, Phys. Earth Planet. Inter., 2021, vol. 313, p. 106672. https://doi.org/10.1016/j.pepi.2021.106672

    Article  Google Scholar 

  19. Glaznev, N.V., Kompleksnye geofizicheskie modeli litosfery Fennoskandii (Integrated Geophysical Models of the Fennoscandian Lithosphere), Apatity: KaeM, 2003.

  20. Goev, A.G., Sanina, I.A., Oreshin, S.I., Reznichenko, R.A., Tarasov, S.A., and Fedorov, A.V., Receiver-function velocity structure of the lithosphere beneath the Khibiny and Lovozero massifs, Northeastern Baltic Shield, Izv., Phys. Solid Earth, 2021, vol. 57, no. 5, pp. 605–613. https://doi.org/10.1134/S1069351321050062

    Article  Google Scholar 

  21. Gramberg, I.S., Verba, V.V., Verba, M.L., and Kos’ko, M.K., Sedimentary cover thickness map: Sedimentary basins in the Arctic, Polarforschung, 1999, vol. 69, pp. 243–249.

    Google Scholar 

  22. Hussein, M., Mickus, K., and Serpa, L.F., Curie point depth estimates from aeromagnetic data from Death Valley and surrounding regions, California, Pure Appl. Geophys., 2013, vol. 170, pp. 617–632. https://doi.org/10.1007/s00024-012-0557-6

    Article  Google Scholar 

  23. Khain, V.E., Tektonika kontinentov i okeanov (god 2000) (Continental and Oceanic Tectonics (Year 2000)), Moscow: Mir, 2001.

  24. Kozlov, N.E., Sorokhtin, N.O., Glaznev, V.N., Kozlova, N.E., Ivanov, A.A., Kudryashov, N.M., Martynov, E.V., Tyuremnov, V.A., Matyushkin, A.V., and Osipenko, L.G., Geologiya arkheya Baltiiskogo shchita (Geology of the Archean Baltic Shield), St. Petersburg: Nauka, 2006.

  25. Krutikhovskaya, Z.A., Negrutsa, V.Z., and Eliseeva, S.V., Historical and geological prerequisites for regional magnetic anomalies in the eastern part of the Baltic Shield, Geofiz. Zh., 1986, vol. 8, no. 5, pp. 67–78.

    Google Scholar 

  26. Kumar, R., Bansal, A.R., Betts, P.G., and Ravat, D., Re-assessment of the depth to the base of magnetic sources (DBMS) in Australia from aeromagnetic data using the defractal method, Geophys. J. Int., 2021, vol. 225, no. 1, pp. 530–547. https://doi.org/10.1093/gji/ggaa601

    Article  Google Scholar 

  27. Langel, R.A. and Hinze, W.J., The Magnetic Field of the Earth’s Lithosphere, Cambridge, UK: Cambridge Univ. Press, 1998.

    Book  Google Scholar 

  28. Laske, G., Masters, G., Ma, Z., and Pasyanos, M., Update on CRUST1.0: A 1-degree global model of Earth’s crust, in Abstracts European Geoscience Union General Assembly, Vienna: EGU, 2013, EGU2013-2658.

    Google Scholar 

  29. Lebedev, S., Schaeffer, A.J., Fullea, J., and Pease, V., Seismic tomography of the Arctic region: Inferences for the thermal structure and evolution of the lithosphere, in Circum-Arctic Lithosphere Evolution, London, Geological Society, 2017, vol. 460, pp. 419–440.https://doi.org/10.1144/SP460.10

    Book  Google Scholar 

  30. Levshin, A.L., Schweitzer, J., Weidle, C., Shapiro, N.M., and Ritzwoller, M.H., Surface wave tomography of the Barents Sea and surrounding regions, Geophys. J. Int., 2007, vol. 170, pp. 441–459. https://doi.org/10.1111/j.1365-246X.2006.03285.x

    Article  Google Scholar 

  31. Li, C.-F., Lu, Y., and Wang, J., A global reference model of Curie-point depths based on EMAG2, Sci. Rep., 2017, vol. 7, p. 45129. https://doi.org/10.1038/srep45129

    Article  Google Scholar 

  32. Lu, Y., Li, C.-F., Wang, J., and Wan, X., Arctic geothermal structures inferred from Curie-point depths and their geodynamic implications, Tectonophysics, 2022, vol. 822, p. 229158. https://doi.org/10.1016/j.tecto.2021.229158

    Article  Google Scholar 

  33. Maus, S., Yin, F., Lühr, H., Manoj, C., Rother, M., Rauberg, J., Michaelis, I., Stolle, C., and Müller, R.D., Resolution of direction of oceanic magnetic lineations by the sixth-generation lithospheric magnetic field model from CHAMP satellite magnetic measurements, Geochem. Geophys. Geosyst., 2008, vol. 9, no. 7, p. Q07021. https://doi.org/10.1029/2008GC001949

    Article  Google Scholar 

  34. Maus, S., Barckhausen, U., Berkenbosch, H., et al., EMAG2: A 2-arc-minute resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne and marine magnetic measurements, Geochem. Geophys. Geosyst., 2009, vol. 10, p. Q08005. https://doi.org/10.1029/2009GC002471

    Article  Google Scholar 

  35. Meyer, B., Chulliat, A., and Saltus, R., Derivation and error analysis of the Earth magnetic anomaly grid at 2 arc min resolution version 3 (EMAG2v3), Geochem. Geophys. Geosyst., 2017, vol. 18, pp. 4522–4537. https://doi.org/10.1002/2017GC007280

    Article  Google Scholar 

  36. Mints, M.V., Meso-Neoproterozoic Grenville–Sweconorwegian inland orogen: History, tectonics, and geodynamics, Geodin. Tektonofiz., 2017, vol. 8, no. 3, pp. 619–642. https://doi.org/10.5800/GT-2017-8-3-0309

    Article  Google Scholar 

  37. Nilov, M.Yu., Bakunovich, L.I., Sharov, N.V., and Belashev, B.Z., 3D magnetic model of the White Sea crust and adjacent territory, Arkt: Ekol. Ekon., 2021, vol. 11, no. 3, pp. 375–385. https://doi.org/10.25283/2223-4594-2021-3-375-385

    Article  Google Scholar 

  38. Núñez Demarco, P, Prezzi, C., and Sánchez Bettucci, L., Review of Curie point depth determination through different spectral methods applied to magnetic data, Geophys. J. Int., 2021, vol. 224, no. 1, pp. 17–39. https://doi.org/10.1093/gji/ggaa361

    Article  Google Scholar 

  39. Okubo, Y. and Matsunaga, T., Curie point depth in northeast Japan and its correlation with regional thermal structure and seismicity, J. Geophys. Res., 1994, vol. 99, no. B11, pp. 22 363–22 371.

    Article  Google Scholar 

  40. Okubo, Y., Graf, R.J., Hansen, R.O., Ogawa, K., and Tsu, H., Curie point depths of the island of Kyushu and surrounding areas, Japan, Geophysics, 1985, vol. 50, pp. 481–494.

    Article  Google Scholar 

  41. Oliveira, J.T.C., Barbosa, J.A., de Castro, D.L., de Barros Correia, P., Magalhães, J.R.C., Filho, O.J.C., and Buarque, B.V., Precambrian tectonic inheritance control of the NE Brazilian continental margin revealed by Curie point depth estimation, Ann. Geophys., 2021, vol. 64, no. 2, p. GT213. https://doi.org/10.4401/ag-8424

    Article  Google Scholar 

  42. Olsen, N., Ravat, D., Finlay, C.C., and Kother, L.K., LCS-1: A high-resolution global model of the lithospheric magnetic field derived from CHAMP and swarm satellite observations, Geophys. J. Int., 2017, vol. 211, pp. 1461–1477. https://doi.org/10.1093/gji/ggx381

    Article  Google Scholar 

  43. Pashkevich, I.K., Markovskii, V.S., Orlyuk, M.I., Eliseeva, S.V., Mozgovoi, A.P., and Tarashchan, S.A., Magnitnaya model' litosfery Evropy (Magnetic Model of the European Lithosphere), Kiev: Naukova dumka, 1990.

  44. Pashkevich, I.K., Savchenko, A.S., Starostenko, V.I., and Sharov, N.V., A three-dimensional geophysical model of the Earth’s crust in the central part of the Karelian Craton, Dokl. Earth Sci., 2015, vol. 463, no. 4, pp. 808–812. https://doi.org/10.1134/S1028334X1508005X

    Article  Google Scholar 

  45. Pashkevich, I.K., Orlyuk, M.I., Marchenko, A.V., Romanets, A.A., Tsvetkova, A.A., and Bugaenko, I.V., On the possible mantle nature of the longwave Central European magnetic anomaly, Geofiz. Zh., 2020, vol. 42, no. 6, pp. 100–130. https://doi.org/10.24028/gzh.0203-3100.v42i6.2020.222288

    Article  Google Scholar 

  46. Pedersen, H.A., Debayle, E., Maupin, V., et al., Strong lateral variations of lithospheric mantle beneath cratons: Example from the Baltic Shield, Earth Planet. Sci. Lett., 2013, pp. 164–172. https://doi.org/10.1016/j.epsl.2013.09.024

  47. Pirttijärvi, M., 2D Fourier domain operations, FOURPOT program, 2015. https://wiki.oulu.fi/x/0oU7AQ/.

  48. Priestley, K., McKenzie, D., and Ho, T., A lithosphere–asthenosphere boundary: A global model derived from multimode surface-wave tomography and petrology, in Lithospheric Discontinuities, Yuan H. and Romanowicz, B., Eds., AGU, 2019, ch. 6, pp. 111–123. https://doi.org/10.1002/9781119249740.ch6.

  49. Ravat, D., Pignatelli, A., Nicolosi, I., and Chiappini, M., A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data, Geophys. J. Int., 2007, vol. 169, pp. 421–434. https://doi.org/10.1111/j.1365-246X.2007.03305.x

    Article  Google Scholar 

  50. Salazar, J.M., Vargas, C.A., and Leon, H., Curie point depth in the SW Caribbean using the radially averaged spectra of magnetic anomalies, Tectonophysics, 2017, vol. 694, pp. 400–413. https://doi.org/10.1016/j.tecto.2016.11.023

    Article  Google Scholar 

  51. Salem, A., Green, C., Ravat, D., Singh, K.H., East, P., Fairhead, J.D., Morgen, S., and Biegert, E., Depth to Curie temperature across the central Red Sea from magnetic data using the de-fractal method, Tectonophysics, 2014, vol. 624–625, pp. 75–86. https://doi.org/10.1016/j.tecto.2014.04.027

    Article  Google Scholar 

  52. Seredkina, A., S-wave velocity structure of the upper mantle beneath the arctic region from Rayleigh wave dispersion data, Phys. Earth Planet. Inter., 2019b, vol. 290, pp. 76–86. https://doi.org/10.1016/j.pepi.2019.03.007

    Article  Google Scholar 

  53. Seredkina, A.I. and Filippov, S.V., The depth to magnetic sources in the Arctic and its relationship with some parameters of the lithosphere, Russ. Geol. Geophys., 2021, vol. 62, no. 7, pp. 735–745. https://doi.org/10.2113/RGG20194106

    Article  Google Scholar 

  54. Sharov, N.V. and Lebedev, A.A., Heterogeneous lithospheric structure of the Fennoscandian shield: Seismic data, Geodin. Tektonofiz., 2022, vol. 13, no. 1, p. 0569. https://doi.org/10.5800/GT-2022-13-1-0569

  55. Sharov, N.V., Adushkin, V.V., Andryushchenko, Yu.N., Assinovskaya, B.A., Beketova, E.B., Berzin, R.G., Vagin, S.A., Vardanyants, I.L., Vinogradov, O.V., Zhda-nova, L.A., et al., Glubinnoe stroenie i seismichnost' Karel’skogo regiona i ego obramleniya (Deep Structure and Seismicity of the Karelian Region and Its Framing), Petrozavodsk: KarNTs RAN, 2004.

  56. Sharov, N.V., Bakunovich, L.I., Belashev, B.Z., Zhuravlev, V.A., and Nilov, M.Yu., Geological–geophysical models of the crust for the White Sea region, Geodin. Tektonofiz., 2020, vol. 11, no. 3, pp. 566–582. 2020. https://doi.org/10.5800/GT-2020-11-3-0491

  57. Slabunov, A.I., Balagansky, V.V., and Shchipansky, A.A., Mesoarchean to Paleoproterozoic crustal evolution of the Belomorian province, Fennoscandian shield, and the tectonic setting of eclogites, Russ. Geol. Geophys., 2021, vol. 62, no. 5, pp. 525–546. https://doi.org/10.2113/rgg20204266

    Article  Google Scholar 

  58. Tanaka, A., Okubo, Y., and Matsubayashi, O., Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia, Tectonophysics, 1999, vol. 306, pp. 461–470.

    Article  Google Scholar 

  59. Wen, L., Kang, G., Bai, C., and Gao, G., Studies on the relationships of the Curie surface with heat flow and crustal structures in Yunnan Province, China, and its adjacent areas, Earth Planets Space, 2019, vol. 71, p. 85. https://doi.org/10.1186/s40623-019-1063-1

    Article  Google Scholar 

  60. Yanovskii, B.M., Zemnoi magnetism (Terrestrial Magnetism), Leningrad: Leningradskii universitet, 1978.

Download references

Funding

The study of the depths of lithospheric magnetic sources under the Kola Peninsula was supported by the Russian Science Foundation (project no. 21-17-00161), under the rest of the territory of the Baltic Shield according to the state task of IZMIRAN.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Filippova or S. V. Filippov.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

DATA AVAILABILITY

The resulting distribution of the depth of the lower boundary of lithospheric magnetic sources is available upon request (aleirk@mail.ru).

Additional information

Translated by E. Seifina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippova, A.I., Filippov, S.V. The Depths to Lithospheric Magnetic Sources under the Baltic Shield. Geomagn. Aeron. 63, 629–641 (2023). https://doi.org/10.1134/S0016793223600431

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793223600431

Keywords:

Navigation