Skip to main content
Log in

Analysis of Cosmic Ray Fluxes at Different Stations during Geomagnetic Storms using Wavelet Based Approaches: Continuous Wavelet Transform and Multi-Resolution Analysis

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

This study investigated the impact of different types of geomagnetic storms on cosmic ray fluxes at different stations using various wavelet-based approaches such as continuous wavelet transformation (CWT) and multi-resolution analysis (MRA). We used the cosmic ray intensity data from the NAIN, INVK, OULU, and NEWK neutron monitor stations and solar-interplanetary activity data from the OMNI web data center for this study. We considered four different geomagnetic storm events: 23 June 2015, 13 October 2016, 8 September 2017, and 26 August 2018. The study revealed that the selected geomagnetic storms had a significant impact on cosmic ray fluxes and that the variations of cosmic ray fluxes differed throughout stations and events. The October 13, 2016, event showed a greater modulation of cosmic ray fluxes than the other three selected storms. Furthermore, the analysis shows the varying periodicity corresponding to cosmic ray fluctuations over different stations during the selected geomagnetic storms. This may be due to various factors, such as interplanetary magnetic field strength and orientation, observer location, and local magnetic fields. These findings provide insights into the effect on cosmic ray intensity at ground-based monitor stations due to geomagnetic storms and may serve as a reference for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Aartsen, M., Abraham, K., Ackermann, M., Adams, J., Aguilar, J., Ahlers, M., Ahrens, M., Altmann, D., Anderson, T., Ansseau, I., et al., Anisotropy in cosmic-ray arrival directions in the southern hemisphere based on six years of data from the ice cube detector, Astrophys. J., 2016, vol. 826, no. 2, p. 220. https://doi.org/10.3847/0004-637X/826/2/220

    Article  Google Scholar 

  2. Adhikari, B. and Chapagain, N.P., Polar cap potential and merging electric field during high intensity long duration continuous auroral activity, J. Nepal Phys. Soc., 2015, vol. 3, no. 1, pp 6–17. https://doi.org/10.3126/jnphyssoc.v3i1.14437

    Article  Google Scholar 

  3. Adhikari, B., Khatiwada, R., and Chapagain, N., Analysis of geomagnetic storms using wavelet transforms. J. Nepal Phys. Soc., 2017, vol. 4, no. 1, pp. 119–124. https://doi.org/10.3126/jnphyssoc.v4i1.17346

    Article  Google Scholar 

  4. Adhikari, B., Dahal, S., Sapkota, N., Baruwal, P., Bhattarai, B., Khanal, K., and Chapagain, N.P., Field-aligned current and polar cap potential and geomagnetic disturbances: A review of cross-correlation analysis, Earth Space Sci., 2018, vol. 5, no. 9, pp. 440–455. https://doi.org/10.1029/2018EA000392

    Article  Google Scholar 

  5. Adhikari, B., Baral, R., Calabia, A., Shah, M., Mishra, R. K., Silwal, A., Bohara, S., and Manandhar, R., Spectral features of Forbush decrease during geomagnetic storms, SSRN, 2021. https://doi.org/10.2139/ssrn.4051359

  6. Akala, A., Oyedokun, O., Amaechi, P., Simi, K., Ogwala, A., and Arowolo, O., Solar origins of August 26, 2018 geomagnetic storm: Responses of the interplanetary medium and equatorial/low-latitude ionosphere to the storm, Space Weather, 2021, vol. 19, no. 10, p. e2021SW002734. https://doi.org/10.1029/2021SW002734

  7. Baral, R., Adhikari, B., Calabia, A., Shah, M., Mishra, R. K., Silwal, A., Bohara, 27 S., Manandhar, R., del Peral, L., and Frías, M.D.R., Spectral features of Forbush decreases during geomagnetic storms, J. Atmos. Sol.-Terr. Phys., 2023, vol. 242, p. 105981. https://doi.org/10.1016/j.jastp.2022.105981

    Article  Google Scholar 

  8. Barouch, E. and Burlaga, L., Causes of Forbush decreases and other cosmic ray variations, J. Geophys. Res., 1975, vol. 80, no. 4, pp. 449–456. https://doi.org/10.1029/JA080i004p00449

    Article  Google Scholar 

  9. Belov, A., Abunin, A., Abunina, M., Eroshenko, E., O-leneva, V., Yanke, V., Papaioannou, A., Mavromichalaki, H., Gopalswamy, N., and Yashiro, S., Coronal mass ejections and non-recurrent Forbush decreases, Sol. Phys., 2014, vol. 289, no. 10, pp. 3949–3960. https://doi.org/10.1007/s11207-014-0534-6

    Article  Google Scholar 

  10. Biermann, P.L. and Sigl, G., Introduction to cosmic rays, in Physics and Astrophysics of Ultra-High-Energy Cosmic Rays, Springer, 2001, pp. 1–26.

    Google Scholar 

  11. Buchvarova, M., Galactic cosmic rays above the Earth’s atmosphere, J. Phys.: Conf. Ser., 2022, vol. 2255, p. 012003. https://doi.org/10.1088/1742-6596/2255/1/012003

    Article  Google Scholar 

  12. Burkholder, B. L., Cuellar, R., Nykyri, K., Ma, X., and Debchoudhury, S., A regional classification of time spectral amplitudes in total electron content: Southeastern United States during solar cycle 24, Front. Astron. Space Sci., 2022, vol. 9, p. 1040082. https://doi.org/10.3389/fspas.2022.1040082

    Article  Google Scholar 

  13. Cane, H.V., Coronal mass ejections and Forbush decreases, Space Sci. Rev., 2000, pp. 55–77.

  14. Chertok, I., Belov, A., and Abunin, A., Solar eruptions, Forbush decreases, and geomagnetic disturbances from outstanding active region 12673, Space Weather, 2018, vol. 16, no. 10, pp. 1549–1560. https://doi.org/10.1029/2018SW001899

    Article  Google Scholar 

  15. Dhurve, A., Saxena, A. K., and Ghuratia, R., Variations of cosmic ray intensity in relation to sunspot number and solar wind parameters over the period 1996–2019, Int. J. Sci. Res. Sci. Technol., 2022. https://doi.org/10.32628/IJSRST229466

  16. Diehl, R., Korn, A. J., Leibundgut, B., Lugaro, M., and Wallner, A., Cosmic nucleosynthesis: A multi-messenger challenge, Prog. Part. Nucl. Phys., 2022, p. 103983. https://doi.org/10.1016/j.ppnp.2022.103983

  17. Dumbović, M., Vršnak, B., Čalogović, J., and Župan, R., Cosmic ray modulation by different types of solar wind disturbances, Astron. Astrophys., 2012, vol. 538, p. A28. https://doi.org/10.1051/0004-6361/201117710

    Article  Google Scholar 

  18. Eastwood, J., Nakamura, R., Turc, L., Mejnertsen, L., and Hesse, M., The scientific foundations of forecasting magnetospheric space weather, Space Sci. Rev., 2017, vol. 212, pp. 1221–1252. https://doi.org/10.1007/s11214-017-0399-8

    Article  Google Scholar 

  19. Echer, E., Gonzalez, W., Guarnieri, F., Dal Lago, A., and Vieira, L., Introduction to space weather, Adv. Space Res., 2005, vol. 35, no. 5, pp. 855–865. https://doi.org/10.1016/j.asr.2005.02.098

    Article  Google Scholar 

  20. Firoz, K., Kumar, D., and Cho, K.-S., On the relationship of cosmic ray intensity with solar, interplanetary, and geophysical parameters, Astrophys. Space Sci., 2010, vol. 325, no. 2, pp. 185–193. https://doi.org/10.1007/s10509-009-0181-9

    Article  Google Scholar 

  21. Gautam, S., Silwal, A., Bashyal, A., Chaudhary, K., Khanal, M., Ale, B., Adhikari, B., Poudel, P., Karki, M., and Chapagain, N., Tracking IMF fluctuations nearby Sun using wavelet analysis: Parker solar probe first encounter data, Geomagn. Aeron. (Engl. Transl.), 2022, vol. 62, no. 1, pp. 138–150. https://doi.org/10.1134/S0016793222020074

  22. Grimani, C., Telloni, D., Benella, S., Cesarini, A., Fabi, M., and Villani, M., Study of galactic cosmic-ray flux modulation by interplanetary plasma structures for the evaluation of space instrument performance and space weather science investigations, Atmosphere, 2019, vol. 10, no. 12, p. 749. https://doi.org/10.3390/atmos10120749

    Article  Google Scholar 

  23. Grimani, C., Cesarini, A., Fabi, M., Sabbatini, F., Telloni, D., and Villani, M., Recurrent galactic cosmic-ray flux modulation in l1 and geomagnetic activity during the declining phase of the solar cycle 24, Astrophys. J., 2020, vol. 904, no. 1, p. 64. https://doi.org/10.3847/1538-4357/abbb90

    Article  Google Scholar 

  24. Guarnieri, F. L., Tsurutani, B. T., Gonzalez, W. D., Echer, E., Gonzalez, A. L., Grande, M., and Soraas, F., ICME and CIR storms with particular emphasis on HILDCAA events, in Proceedings of the ILWS Workshop, Beijing, 2006, pp. 19–20.

  25. Hajra, R., Variation of the interplanetary shocks in the inner heliosphere, Astrophys. J., 2021, vol. 917, no. 2, p. 91. https://doi.org/ 4357/ac0897.https://doi.org/10.3847/1538-90

  26. Hammond, D. K., Vandergheynst, P., and Gribonval, R., Wavelets on graphs via spectral graph theory, Appl. Comput. Harmonic Anal., 2011, vol. 30, no. 2, pp. 129–150. https://doi.org/10.1016/j.acha.2010.04.005

    Article  Google Scholar 

  27. Hillas, A., Can diffusive shock acceleration in supernova remnants account for high-energy galactic cosmic rays?, J. Phys. G: Nucl. Part. Phys., 2005, vol. 31, no. 5, p. R95. https://doi.org/10.1088/0954-3899/31/5/R02

    Article  Google Scholar 

  28. Horowitz, C. J., Arcones, A., Cote, B., Dillmann, I., Nazarewicz, W., Roederer, I., 98 Schatz, H., Aprahamian, A., Atanasov, D., Bauswein, A., et al., R-process nucleo synthesis: Connecting rare-isotope beam facilities with the cosmos, J. Phys. G: Nucl. Part. Phys., 2019, vol. 46, no. 8, p. 083001. https://doi.org/10.1088/1361-6471/ab0849

    Article  Google Scholar 

  29. Hossain, K. M., Ghosh, D. N., and Ghosh, K., Investigating multifractality of solar irradiance data through wavelet based multifractal spectral analysis, Signal Processing, 2009, vol. 3, no. 4, p. 83.

    Google Scholar 

  30. Idosa, C. and Shogile, K., Effects of solar flares on ionospheric TEC over ice land before and during the geomagnetic storm of 8 September 2017, Phys. Plasmas, 2022, vol. 29, no. 9, p. 092902. https://doi.org/10.1063/5.0098971

    Article  Google Scholar 

  31. Idosa, C. and Shogile, K., Variations of ionospheric TEC due to coronal mass ejections and geomagnetic storm over New Zealand, New Astron., 2023, vol. 99, p. 101961. https://doi.org/10.1016/j.newast.2022.101961

    Article  Google Scholar 

  32. Kamide, Y., Baumjohann, W., Daglis, I., Gonzalez, W., Grande, M., Joselyn, J., McPherron, R., Phillips, J., Reeves, E., Rostoker, G., et al., Current understanding of magnetic storms: Storm-substorm relationships, J. Geophys. Res.: Space Phys., 1998, vol. 103, no. A8, pp. 17 705–17 728. https://doi.org/10.1029/98JA01426

    Article  Google Scholar 

  33. Katsavrias, C., Papadimitriou, C., Hillaris, A., and Balasis, G., Application of wavelet methods in the investigation of geospace disturbances: a review and an evaluation of the approach for quantifying wavelet power, Atmosphere, 2022, vol. 13, no. 3, p. 499. https://doi.org/10.3390/atmos13030499

    Article  Google Scholar 

  34. Kaushik, S.C., Shrivastava, A.K., and Rajput, H.M., Study of intense geomagnetic storms and associated cosmic ray intensity variation, in 29th International Cosmic Ray Conference, Pune, 2005, vol. 2, pp. 151–154.

  35. Kharayat, H., Prasad, L., Mathpal, R., Garia, S., and Bhatt, B., Study of cosmic ray intensity in relation to the interplanetary magnetic field and geomagnetic storms for solar cycle 23, Sol. Phys., 2016, vol. 291, no. 2, pp. 603–611. https://doi.org/10.1007/s11207-016-0852-y

    Article  Google Scholar 

  36. Kihara, W., Munakata, K., Kato, C., Kataoka, R., Kadokura, A., Miyake, S., Kozai, M., Kuwabara, T., Tokumaru, M., Mendonça, R., et al., A peculiar ICME event in August 2018 observed with the global muon detector network, Space Weather, 2021, vol. 19, no. 3, p. e2020SW002531. https://doi.org/10.1029/2020SW002531

  37. Kudela, K. and Sabbah, I., Quasi-periodic variations of low energy cosmic rays, Sci. China Technol. Sci., 2016, vol. 59, pp. 547–557. https://doi.org/10.1007/s11431-015-5924-y

    Article  Google Scholar 

  38. Kudela, K., Storini, M., Hofer, M. Y., and Belov, A., Cosmic rays in relation to space weather, in Cosmic Rays and Earth, Dordrecht: Springer, 2000, pp. 153–174.

    Google Scholar 

  39. Kumar, P. and Foufoula-Georgiou, E., Wavelet analysis for geophysical applications, Rev. Geophys., 1997, vol. 35, no. 4, pp. 385–412. https://doi.org/10.1029/97RG00427

    Article  Google Scholar 

  40. Lara, A., Gopalswamy, N., Caballero-López, R., Yashiro, S., Xie, H., and Valdés-Galicia, J., Coronal mass ejections and galactic cosmic-ray modulation, Astrophys. J., 2005, vol. 625, no. 1, p. 441.

    Article  Google Scholar 

  41. Letessier-Selvon, A. and Stanev, T., Ultrahigh energy cosmic rays, Rev. Modern Phys., 2011, vol. 83, no. 3, p. 907. https://doi.org/10.1103/RevModPhys.83.907

    Article  Google Scholar 

  42. Li, X., Baker, D., Temerin, M., Cayton, T., Reeves, E., Christensen, R., Blake, J., Looper, M., Nakamura, R., and Kanekal, S., Multi- satellite observations of the outer zone electron variation during the November 3–4, 1993, magnetic storm, J. Geophys. Res.: Space Phys., 1997, vol. 102, no. A7, pp. 14 123–14 140. https://doi.org/10.1029/97JA01101

    Article  Google Scholar 

  43. Lingri, D., Mavromichalaki, H., Belov, A., Eroshenko, E., Yanke, V., Abunin, A., and Abunina, M., Solar activity parameters and associated Forbush decreases during the minimum between cycles 23 and 24 and the ascending phase of cycle 24, Sol. Phys., 2016, vol. 291, no. 3, pp. 1025–1041. https://doi.org/10.1007/s11207-016-0863-8

    Article  Google Scholar 

  44. Liu, T., Su, Y., Cheng, X., van Ballegooijen, A., and Ji, H., Magnetic field modeling of hot channels in four flare/coronal mass ejection events, Astrophys. J., 2018, vol. 868, no. 1, p. 59. https://doi.org/10.3847/1538-4357/aae692

    Article  Google Scholar 

  45. Maghrabi, A., Al Harbi, H., Al-Mostafa, Z., Kordi, M., and Al-Shehri, S., The KACST muon detector and its application to cosmic-ray variations studies, Adv. Space Res., 2012, vol. 50, no. 6, pp. 700–711. https://doi.org/10.1016/j.asr.2011.10.011

    Article  Google Scholar 

  46. Mandrikova, O. and Mandrikova, B., Hybrid method for detecting anomalies in cosmic ray variations using neural networks autoencoder, Symmetry, 2022, vol. 14, no. 4, p. 744. https://doi.org/10.3390/sym14040744

    Article  Google Scholar 

  47. Manyilizu, M., Dufois, F., Penven, P., and Reason, C., Interannual variability of sea surface temperature and circulation in the tropical Western Indian Ocean, Afr. J. Mar. Sci., 2014, vol. 36, no. 2, pp. 233–252. https://doi.org/10.2989/1814232X.2014.928651

    Article  Google Scholar 

  48. Markovic, D. and Koch, M., Wavelet and scaling analysis of monthly precipitation extremes in Germany in the 20th century: Interannual to interdecadal oscillations and the North Atlantic Oscillation influence, Water Resour. Res., 2005, vol. 41, no. 9. https://doi.org/10.1029/2004WR003843

  49. Mathpal, C., Prasad, L., Pokharia, M., and Bhoj, C., Study of cosmic ray intensity in relation to the interplanetary magnetic field and geomagnetic storms for solar cycle 24, Astrophys. Space Sci., 2018, vol. 363, no. 8, pp. 1–11. https://doi.org/10.1007/s10509-018-3390-2

    Article  Google Scholar 

  50. Mavromichalaki, H., Paouris, E., and Karalidi, T., Cosmic-ray modulation: An empirical relation with solar and heliospheric parameters, Sol. Phys., 2007, vol. 245, no. 2, pp. 369–390. https://doi.org/10.1007/s11207-007-9043-1

    Article  Google Scholar 

  51. Mavromichalaki, H., Papailiou, M.-C., Gerontidou, M., Dimitrova, S., and Kudela, K., Human physiological parameters related to solar and geomagnetic disturbances: Data from different geographic regions, Atmosphere, 2021, vol. 12, no. 12, p. 1613. https://doi.org/10.3390/atmos12121613

    Article  Google Scholar 

  52. Mendes, O., Jr., Domingues, M.O., Da Costa, A.M., and De Gonzalez, A.L.C., Wavelet analysis applied to magneto grams: Singularity detections related to geomagnetic storms, J. Atmos. Sol.-Terr. Phys., 2005, vol. 67, nos. 17–18, pp. 1827–1836. https://doi.org/10.1016/j.jastp.2005.07.004

    Article  Google Scholar 

  53. Mertens, C.J. and Tobiska, W.K., Space weather radiation effects on high-altitude/-latitude aircraft, in Space Weather Effects and Applications, AGU, 2021, pp. 79–110. https://doi.org/10.1002/9781119815570.ch4.

  54. Mironova, I.A., Aplin, K.L., Arnold, F., Bazilevskaya, G.A., Harrison, R.G., Krivolutsky, A.A., Nicoll, K.A., Rozanov, E.V., Turunen, E., and Usoskin, I.G., Energetic particle influence on the Earth’s atmosphere, Space Sci. Rev., 2015, vol. 194, no. 1, pp. 1–96. https://doi.org/10.1007/s11214-015-0185-4

    Article  Google Scholar 

  55. Mishra, A., Gupta, M., and Mishra, V., Cosmic ray intensity variations in relation with solar flare index and sunspot numbers, Sol. Phys., 2006, vol. 239, no. 1, pp. 475–491. https://doi.org/10.1007/s11207-006-0138-x

    Article  Google Scholar 

  56. Moldwin, M., An Introduction to Space Weather, Cambridge Univ. Press, 2022.

    Book  Google Scholar 

  57. Munakata, K., Kozai, M., Kato, C., Hayashi, Y., Kataoka, R., Kadokura, A., Tokumaru, M., Mendonça, R., Echer, E., Dal Lago, A., et al., Large-amplitude bidirectional anisotropy of cosmic-ray intensity observed with worldwide networks of ground-based neutron monitors and muon detectors in 2021 November, Astrophys. J., 2022, vol. 938, no. 1, p. 30. https://doi.org/10.3847/1538-4357/ac91c5

    Article  Google Scholar 

  58. Oloketuyi, J., Liu, Y., Amanambu, A. C., and Zhao, M., Responses and periodic variations of cosmic ray intensity and solar wind speed to sunspot numbers, Adv. Astron., 2020, p. 3527570. https://doi.org/10.1155/2020/3527570

  59. Papailiou, M., Ioannidou, S., Tezari, A., Lingri, D., Konstantaki, M., Mavromichalaki, H., and Dimitrova, S., Space weather phenomena on heart rate: A study in the Greek region, Int. J. Biometeorol., 2022, pp. 1–9. https://doi.org/10.1007/s00484-022-02382-3

  60. Papaioannou, A., Belov, A., Abunina, M., Eroshenko, E., Abunin, A., Anastasiadis, A., Patsourakos, S., and Mavromichalaki, H., Interplanetary coronal mass ejections as the driver of non-recurrent Forbush decreases, Astrophys. J., 2020, vol. 890, no. 2, p. 101. https://doi.org/10.3847/1538-4357/ab6bd1

    Article  Google Scholar 

  61. Piersanti, M., Alberti, T., Bemporad, A., Berrilli, F., Bruno, R., Capparelli, V., 218 Carbone, V., Cesaroni, C., Consolini, G., Cristaldi, A., et al., Comprehensive analysis of the geoeffective solar event of 21 June 2015: Effects on the magnetosphere, plasmasphere, and ionosphere systems, Sol. Phys., 2017, vol. 292, pp. 1–56. https://doi.org/10.1007/s11207-017-1186-0

    Article  Google Scholar 

  62. Pogorelov, N.V., Stone, E.C., Florinski, V., and Zank, G.P., Termination shock asymmetries as seen by the voyager spacecraft: The role of the interstellar magnetic field and neutral hydrogen, Astrophys. J., 2007, vol. 668, no. 1, p. 611.

    Article  Google Scholar 

  63. Rafiee, J., Tse, P., Harifi, A., and Sadeghi, M., A novel technique for selecting mother wavelet function using an intelligent fault diagnosis system, Expert Syst. Appl., 2009, vol. 36, no. 3, pp. 4862–4875. https://doi.org/10.1016/j.eswa.2008.05.052

    Article  Google Scholar 

  64. Ricciardi, T. R., Wolf, W. R., and Taira, K., Transition, intermittency and phase interference effects in airfoil secondary tones and acoustic feedback loop, J. Fluid Mech., 2022, vol. 937, no. A23. https://doi.org/10.1017/jfm.2022.129

  65. Richardson, I., Cliver, E., and Cane, H., Sources of geomagnetic activity over the solar cycle: Relative importance of coronal mass ejections, high- speed streams, and slow solar wind. J. Geophys. Res.: Space Phys., 2000, vol. 105, no. A8, pp. 18203–18213. https://doi.org/10.1029/1999JA000400

    Article  Google Scholar 

  66. Roussos, E., Jackman, C.M., Thomsen, M.F., Kurth, W., Badman, S.V., Paranicas, C., Kollmann, P., Krupp, N., Bučík, R., Mitchell, D. G., et al., Solar energetic particles (SEP) and galactic cosmic rays (GCR) as tracers of solar wind conditions near Saturn: Event lists and applications, Icarus, 2018, vol. 300, pp. 47–71. https://doi.org/10.1016/j.icarus.2017.08.040

    Article  Google Scholar 

  67. Saad Farid, A., High frequency spectral features of galactic cosmic rays at different rigidities during the ascending and maximum phases of the solar cycle 24, Astrophys. Space Sci., 2019, vol. 364, pp. 1–6. https://doi.org/10.1007/s10509-019-3544-x

    Article  Google Scholar 

  68. Samar, V.J., Bopardikar, A., Rao, R., and Swartz, K., Wavelet analysis of neuron electric waveforms: a conceptual tutorial, Brain Lang., 1999, vol. 66, no. 1, pp.7–60. https://doi.org/10.1006/brln.1998.2024

    Article  Google Scholar 

  69. Savić, M., Veselinović, N., Dragić, A., Maletić, D., Joković, D., Udovičić, V., Banjanac, R., and Knežević, D., New insights from cross-correlation studies between solar activity indices and cosmic-ray flux during Forbush decrease events, Adv. Space Res., 2023, vol. 71, no. 4, pp. 2006–2016. https://doi.org/10.1016/j.asr.2022.09.057

    Article  Google Scholar 

  70. Singh, A., Siingh, D., and Singh, R., Space weather: Physics, effects and predictability, Surv. Geophys., 2010, vol. 31, pp. 581–638. https://doi.org/10.1007/s10712-010-9103-1

    Article  Google Scholar 

  71. Singh, R. and Sripathi, S., Ionospheric response to 22–23 June 2015 storm as investigated using ground-based ionosondes and GPS receivers over India, J. Geophys. Res.: Space Phys., 2017, vol. 122, no. 11, pp. 11645–11664. https://doi.org/10.1002/2017JA024460

    Article  Google Scholar 

  72. Sitnikova, E., Hramov, A.E., Koronovsky, A.A., and van Luijtelaar, G., Sleep spindles and spike–wave discharges in EEG: Their generic features, similarities and distinctions disclosed with Fourier transform and continuous wavelet analysis, J. Neurosci. Methods, 2009, vol. 180, no. 2, pp. 304–316. https://doi.org/10.1016/j.jneumeth.2009.04.006

    Article  Google Scholar 

  73. Srebrov, B., Kounchev, O., and Simeonov, G., Wavelet analysis of big data in the global investigation of magnetic field variations in solar–terrestrial physics, 2019. https://doi.org/10.48550/arXiv.1905.12923

  74. Stanev, T. and Stanev, High Energy Cosmic Rays, Springer, 2004, vol. 2.

  75. Thapa, T., Adhikari, B., Baruwal, P., and Pudasainee, K., Variability of relativistic electron flux (E > 2 MeV) during geomagnetically quiet and disturbed days: A case study, Ann. Geophys. Discuss., 2020, pp. 1–21. https://doi.org/10.5194/angeo-2020-35

  76. Thapa, T., Silwal, A., Adhikari, B., Gautam, S. P., Baruwal, P., and Panthi, A., Variability of relativistic electron flux (E > 2 MeV) during geomagnetically quiet and disturbed days: A case study, Astrophys. Space Sci., 2022, vol. 367, no. 11, pp.1–16. https://doi.org/10.1007/s10509-022-04141-7

    Article  Google Scholar 

  77. Tinsley, B.A., Brown, G.M., and Scherrer, P.H., Solar variability influences on weather and climate: Possible connections through cosmic ray fluxes and storm intensification, J. Geophys. Res.: Atmos., 1989, vol. 94, no. D12, pp. 14 783–14 792. https://doi.org/10.1029/JD094iD12p14783

    Article  Google Scholar 

  78. Torrence, C. and Compo, G.P., A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc., 1998, vol. 79, no. 1, pp. 61–78.

    Article  Google Scholar 

  79. Uga, C.I., Effects of geomagnetic storm on ionospheric TEC variability over high latitude regions, Astrophys. Space Sci., 2022, vol. 10, no. 2, pp. 18–27. https://doi.org/10.11648/j.ijass.20221002.11

    Article  Google Scholar 

  80. Wang, Y., Shen, C., Liu, R., Liu, J., Guo, J., Li, X., Xu, M., Hu, Q., and Zhang, T., Understanding the twist distribution inside magnetic flux ropes by anatomizing an interplanetary magnetic cloud, J. Geophys. Res.: Space Phys., 2018, vol. 123, no. 5, pp. 3238–3261. https://doi.org/10.1002/2017JA024971

    Article  Google Scholar 

  81. White, P.R., Transforms, wavelets, in Encyclopedia of Vibration, Braun, S.G., Ewins, D.J., and Rao, S.S., Eds., London; Academic Press, 2002, pp. 1419–1435. https://doi.org/10.1006/rwvb.2001.0157.

  82. Whitmire, D. P. and Jackson IV, A.A., Are periodic mass extinctions driven by a distant solar companion?, Nature, 1984, vol. 308, p. 5961, pp. 713–715.

  83. Yadav, R. and Yadav, N., Influence of magnetic clouds on cosmic ray intensity variation, Sol. Phys., 1986, vol. 105, pp. 413–428.

    Google Scholar 

  84. Zreda, M., Shuttleworth, W., Zeng, X., Zweck, C., Desilets, D., Franz, T., and Rosolem, R., Cosmos: The cosmic-ray soil moisture observing system, Hydrol. Earth Syst. Sci., 2012, vol. 16, no. 11, pp. 4079–4099. https://doi.org/10.5194/hess-16-4079-2012

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to extend their appreciation to the Neutron Monitor Data Base Service, (http://www.nmdb. eu/nest/), and the OMNI Web data sets (https://omniweb. gsfc.nasa.gov/). We want to thank our collaborators from the department of space science at the University of Alabama in Huntsville, Huntsville, AL, USA, both Sujan Prasad Gautam (astrosujan@gmail.com) and Ashok Silwal (ashoksilwal0@gmail.com) for their comments and guidance in this manuscript.

Funding

The authors declare that there is no funding available for this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chali Idosa Uga, Binod Adhikari or Dessalegn Teferi.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chali Idosa Uga, Adhikari, B. & Teferi, D. Analysis of Cosmic Ray Fluxes at Different Stations during Geomagnetic Storms using Wavelet Based Approaches: Continuous Wavelet Transform and Multi-Resolution Analysis. Geomagn. Aeron. 63, 818–838 (2023). https://doi.org/10.1134/S0016793223600418

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793223600418

Navigation