Skip to main content
Log in

Weibel Instability and Deformation of an External Magnetic Field in the Region of Decay of a Strong Discontinuity in a Plasma with Hot Electrons

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

In this paper, for a number of significantly different parameters of a localized plane layer of collisionless electron–proton plasma and an external magnetic field parallel to its surface, we perform a detailed numerical analysis of the evolution of the magnetic field structure and the dynamics of plasma expansion into vacuum from a region with initially isotropically heated electrons by means of the particle-in-cell simulation. The region has the form of a long semi-cylinder, the axis of which is located on the surface of the plasma layer. We reveal that the process of the decay of such an inhomogeneously heated strong “plasma-vacuum” discontinuity is largely controled by the anisotropy of the resulting electron-velocity distribution and the development of the Weibel instability caused by it. We establish, under certain conditions, the formation and rapid expansion of strongly inhomogeneous electron currents in the form of filaments (similar to z-pinches) parallel to the external magnetic field, as well as the formation and slow evolution of current sheets oriented at various angles to the boundary between the plasma and the deforming magnetic field. It is shown that these currents can produce fields that are much larger than the external magnetic field, and the conditions required for this are qualitatively indicated. The discovered phenomena are possible in coronal loops, stellar wind, and explosive processes in planetary magnetospheres, as well as in laser plasma. The latter makes it possible to model similar phenomena in astrophysical plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Albertazzi, B., Chen, S.N., Antici, P., et al., Dynamics and structure of self-generated magnetics fields on solids following high contrast, high intensity laser irradiation, Phys. Plasmas, 2015, vol. 22, no. 12, 123108. https://doi.org/10.1063/1.4936095

    Article  Google Scholar 

  2. Anan’in, O.B., Afanas’ev, Yu.V., Bykovskii, Yu.A., and Krokhin, O.N., Lazernaya plazma (Laser Plasma), Moscow: MIFI, 2003.

  3. Arber, T.D., Bennett, K., Brady, C.S., et al., Contemporary particle-in-cell approach to laser-plasma modelling, Plasma Phys. Controlled Fusion, 2015, vol. 57, 113001. https://doi.org/10.1088/0741-3335/57/11/113001

    Article  Google Scholar 

  4. Baumjohann, W., Nakamura, R., and Treumann, R.A., Magnetic guide field generation in collisionless current sheets, Ann. Geophys., 2010, vol. 28, pp. 789–793.

    Article  Google Scholar 

  5. Borodachev, L.V., Garasev, M.A., Kolomiets, D.O., Kocharovsky, V.V., Martyanov, V.Yu., and Nechaev, A.A., Dynamics of a self-consistent magnetic field and diffusive scattering of ions in a plasma with strong thermal anisotropy, Radiophys. Quantum Electron., 2017, vol. 59, no. 12, pp. 991–999.

    Article  Google Scholar 

  6. Bret, A., Weibel, two-stream, filamentation, oblique, bell, Buneman… which one grows faster?, Astrophys. J., 2009, vol. 699, no. 2, pp. 990–1003.

    Article  Google Scholar 

  7. Chang, P., Spitkovsky, A., and Arons, J., Long-term evolution of magnetic turbulence in relativistic collisionless shocks: Electron–positron plasmas, Astrophys. J., 2008, vol. 674, pp. 378–387. https://doi.org/10.1086/524764

    Article  Google Scholar 

  8. Davidson, R., Kinetic waves and instabilities in a uniform plasma, in Basic Plasma Physics, Galeev, A.A. and Sudan, R., Eds., Amsterdam: Energoizdat–North Holland, 1983, pp. 229–298.

    Google Scholar 

  9. Davidson, R.C., Hammer, D.A., Haber, I., and Wagner, C.E., Nonlinear development of electromagnetic instabilities in anisotropic plasmas, Phys. Fluids, 1972, vol. 15, pp. 317–333.

    Article  Google Scholar 

  10. DeForest, S.E., Howard, R.A., Velli, M., Viall, N., and Vourlidas, A., The highly structured outer solar corona, Astrophys. J., 2018, vol. 862, p. 18. https://doi.org/10.3847/1538-4357/aac8e3

  11. Dieckmann, M.E., The filamentation instability driven by warm electron beams: Statistics and electric field generation, Plasma Phys. Controlled Fusion, 2009, vol. 51, 124042. https://doi.org/10.1088/0741-3335/51/12/124042

    Article  Google Scholar 

  12. Dieckmann, M.E., Moreno, Q., Doria, D., et al., Expansion of a radially symmetric blast shell into a uniformly magnetized plasma, Phys. Plasmas, 2018, vol. 25, 052108. https://doi.org/10.1063/1.5024851

    Article  Google Scholar 

  13. Dudík, J., Dzifčáková, E., Meyer-Vernet, N., et al., Nonequilibrium processes in the solar corona, transition region, flares, and solar wind (invited review), Sol. Phys., 2017, vol. 292, p. 100. https://doi.org/10.1007/s11207-017-1125-0

  14. Dyal, P., Particle and field measurements of the starfish diamagnetic cavity, J. Geophys. Res., 2006, vol. 111, A12211. https://doi.org/10.1029/2006ja011827

    Article  Google Scholar 

  15. Echim, M.M., Lemaire, J., and Lie-Svendsen, Ø., A review on solar wind modeling: Kinetic and fluid aspects, Surv. Geophys., 2011, vol. 32, pp. 1–70. https://doi.org/10.1007/s10712-010-9106-y

    Article  Google Scholar 

  16. Fox, W., Matteucci, J., Moissard, C., Schaeffer, D.B., Bhattacharjee, A., Germaschewski, K., and Hu, S.X., Kinetic simulation of magnetic field generation and collisionless shock formation in expanding laboratory plasmas, Phys. Plasmas, 2018, vol. 25, 102106. https://doi.org/10.1063/1.5050813

    Article  Google Scholar 

  17. Garasev, M. and Derishev, E., Impact of continuous particle injection on generation and decay of the magnetic field in collisionless shocks, Month. Not. R. Astron. Soc., 2016, vol. 461, pp. 641–646.

    Article  Google Scholar 

  18. Göde, S., Rödel, C., Zeil, K., et al., Relativistic electron streaming instabilities modulate proton beams accelerated in laser–plasma interactions, Phys. Rev. Lett., 2017, vol. 118, 194801. https://doi.org/10.1103/physrevlett.118.194801

    Article  Google Scholar 

  19. Gruzinov, A., Gamma-ray burst phenomenology, shock dynamo, and the first magnetic fields, Astrophys. J. Lett., 2001, vol. 563, pp. L15–L18.

    Article  Google Scholar 

  20. Huntington, C.M., Finza, F., Ross, J.S., et al., Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows, Nat. Phys., 2015, vol. 11, pp. 173–176.

    Article  Google Scholar 

  21. Kelley, M.C. and Livingston, R., Barium cloud striations revisited, J. Geophys. Res., 2003, vol. 108, 1044. https://doi.org/10.1029/2002ja009412

    Article  Google Scholar 

  22. Kocharovsky, V.V., Kocharovsky, Vl.V., Martyanov, V.Yu., and Tarasov, S.V., Analytical theory of self-consistent current structures in a collisionless plasma, Phys.-Usp., 2016, vol. 59, no. 12, pp. 1165–1210.

    Article  Google Scholar 

  23. Kolodner, P. and Yablonovitch, E., Two-dimensional distribution of self-generated magnetic fields near the laser-plasma resonant-interaction region, Phys. Rev. Lett., 1979, vol. 43, pp. 1402–1403.

    Article  Google Scholar 

  24. Lyubarsky, Y. and Eichler, D., Are gamma-ray burst shocks mediated by the Weibel instability?, Astrophys. J., 2006, vol. 647, pp. 1250–1254.

    Article  Google Scholar 

  25. Medvedev, M.V. and Loeb, A., Generation of magnetic fields in the relativistic shock of gamma-ray burst sources, Astrophys. J., 1999, vol. 526, pp. 697–706.

    Article  Google Scholar 

  26. Moreno, Q., Aruado, A., Korneev, Ph., Li, C.K., Tikhonchuk, V.T., Ribeyre, X., d’Humières, E., and Weber, S., Shocks and phase space vortices driven by a density jump between two clouds of electrons and protons, Phys. Plasmas, 2020, vol. 27, 122106. https://doi.org/10.1088/1361-6587/ab5bfb

    Article  Google Scholar 

  27. Moritaka, T., Kuramitsu, Y., Liu, Y.-L., and Chen, S.-H., Spontaneous focusing of plasma flow in a weak perpendicular magnetic field, Phys. Plasmas, 2016, vol. 23, 032110. https://doi.org/10.1063/1.4942028

    Article  Google Scholar 

  28. Nakamura, R., Varsani, A., Genestreti, K.J., et al., Multiscale currents observed by MMS in the flow braking region, J. Geophys. Res.: Space Phys., 2018, vol. 123, pp. 1260–1278. https://doi.org/10.1002/2017JA024686

    Article  Google Scholar 

  29. Nechaev, A.A., Garasev, M.A., Kocharovsky, V.V., and Kocharovsky, Vl.V., Weibel mechanism of magnetic-field generation in the process of expansion of a collisionless-plasma bunch with hot electrons, Radiophys. Quantum Electron., 2020a, vol. 62, no. 12, pp. 830–848.

    Article  Google Scholar 

  30. Nechaev, A.A., Garasev, M.A., Stepanov, A.N., and Kocharovsky, Vl.V., Formation of a density bump in a collisionless electrostatic shock wave during expansion of a hot dense plasma into a cold rarefied one, Plasma Phys. Rep., 2020b, vol. 46, no. 8, pp. 765–783.

    Article  Google Scholar 

  31. Plechaty, C., Presura, R., and Esaulov, A.A., Focusing of an explosive plasma expansion in a transverse magnetic field, Phys. Rev. Lett., 2013, vol. 111, 185002. https://doi.org/10.1103/physrevlett.111.185002

    Article  Google Scholar 

  32. Priest, E., Magnetohydrodynamics of the Sun, Cambridge, UK: Cambridge University Press, 2014.

    Book  Google Scholar 

  33. Quinn, K., Romagnani, L., Ramakrishna, B., et al., Weibel-induced filamentation during an ultrafast laser-driven plasma expansion, Phys. Rev. Lett., 2012, vol. 108, no. 13, 135001. https://doi.org/10.1103/PhysRevLett.108.135001

    Article  Google Scholar 

  34. Romagnani, L., Bulanov, S.V., Borghesi, M., et al., Observation of collisionless shocks in laser-plasma experiments, Phys. Rev. Lett., 2008, vol. 101, 025004. https://doi.org/10.1103/PhysRevLett.101.025004

    Article  Google Scholar 

  35. Ruyer, C., Gremillet, L., Debayle, A., and Bonnaud, G., Weibel-mediated collisionless shocks in laser-irradiated dense plasmas: Prevailing role of the electrons in generating the field fluctuations, Phys. Plasmas, 2015, vol. 22, 032102. https://doi.org/10.1063/1.4928096

    Article  Google Scholar 

  36. Sakagami, Y., Kawakami, H., Nagao, S., and Yamanaka, C., Two-dimensional distribution of self-generated magnetic fields near the laser-plasma resonant-interaction region, Phys. Rev. Lett., 1979, vol. 42, pp. 839–842.

    Article  Google Scholar 

  37. Sakawa, Y., Morita, T., Kuramitsu, Y., and Takabe, H., Collisionless electrostatic shock generation using high-energy laser systems, Adv. Phys., 2016, vol. 1, pp. 425–443.

    Google Scholar 

  38. Shuster, J.R., Gershman, D.J., Chen, L.-J., et al., Mms measurements of the Vlasov equation: Probing the electron pressure divergence within thin current sheets, Geophys. Res. Lett., 2019, vol. 46, pp. 7862–7872. https://doi.org/10.1029/2019GL083549

    Article  Google Scholar 

  39. Silva, L.O., Physical problems (microphysics) in relativistic plasma flows, AIP Conf. Proc., 2006, vol. 856, pp. 109–128.

    Article  Google Scholar 

  40. Sironi, L. and Spitkovsky, A., Particle acceleration in relativistic magnetized collisionless pair shocks: Dependence of shock acceleration on magnetic obliquity, Astrophys. J., 2009, vol. 698, pp. 1523–1549. https://doi.org/10.1088/0004-637X/698/2/1523

    Article  Google Scholar 

  41. Sironi, L., Spitkovsky, A., and Arons, J., The maximum energy of accelerated particles in relativistic collisionless shocks, Astrophys. J., 2013, vol. 771, p. 54. https://doi.org/10.1088/0004-637X/771/1/54

  42. Spitkovsky, A., Particle acceleration in relativistic collisionless shocks: Fermi process at last?, Astrophys. J. Lett., 2008, vol. 682, pp. L5–L8.

    Article  Google Scholar 

  43. Thaury, C., Mora, P., Heron, A., and Adam, J.C., Self-generation of megagauss magnetic fields during the expansion of a plasma, Phys. Rev. E, 2010, vol. 82, no. 1, 016408. https://doi.org/10.1103/physreve.82.016408

    Article  Google Scholar 

  44. Vörös, Z., Yordanova, E., Varsani, A., et al., MMS observation of magnetic reconnection in the turbulent magnetosheath, J. Geophys. Res.: Space Phys., 2017, vol. 122, pp. 11 442–11 467. https://doi.org/10.1002/2017JA024535

    Article  Google Scholar 

  45. Weibel, E.S., Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution, Phys. Rev. Lett., 1959, vol. 2, pp. 83–84.

    Article  Google Scholar 

  46. Yoon, P.H., Kinetic instabilities in the solar wind driven by temperature anisotropies, Rev. Mod. Plasma Phys., 2017, vol. 1, p. 4. https://doi.org/10.1007/s41614-017-0006-1

  47. Zaitsev, V.V. and Stepanov, A.V., Magnitosfery aktivnykh oblastei Solntsa i zvezd (Magnetospheres of Active Regions of the Sun and Stars), Moscow: Fizmatlit, 2018.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-29-21 029 (sections 1–3), and the Russian Science Foundation grant no. 19-72-10 111 (sections 4–5). Numerical calculations were performed with computing resources of the Joint Supercomputer Center of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kocharovsky.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garasev, M.A., Nechaev, A.A., Stepanov, A.N. et al. Weibel Instability and Deformation of an External Magnetic Field in the Region of Decay of a Strong Discontinuity in a Plasma with Hot Electrons. Geomagn. Aeron. 62, 182–198 (2022). https://doi.org/10.1134/S0016793222030094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793222030094

Navigation