Skip to main content
Log in

Formation of strong stationary vortex turbulence in the terrestrial magnetosheath

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The microscopic consequences of the presence of nonlinear vortex structures in the near-Earth plasma dispersive medium are studied in this work. In dispersive media, strongly localized vortex structures contain trapped particles, cause pronounced density fluctuations, and intensify transfer processes, mixing in a medium; i.e., they can form strong vortex turbulence. Turbulence is represented as a gas in the ensemble of strongly localized (therefore, weakly interacting) identical vortices composing the ground state. Vortices with different amplitudes are randomly located in space (since they interact with one another) and are described statistically. It is assumed that the steady turbulent state is formed through a balance of mutually competing effects: spontaneous generation of vortices due to nonlinear steepening of the disturbance front, ^noise transfer to small scales, and collisional or collisionless damping of disturbances in the HF region. Noise scaling in the inertial interval takes place since structures merge during their collision. A magnetized plasma medium in the magnetosheath is considered. A new type of turbulent fluctuation spectra with respect to wavenumbers k −8/3, which is in satisfactory agreement with satellite observations in space plasma, has been determined. The medium particle diffusion on an ensemble of vortices has also been studied. It has been established that the interaction between structures themselves and between structures and medium particles causes anomalous diffusion in the medium. The effective diffusion coefficient square roothly depends on the noise stationary level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel, G.A., Freeman, M.P., and Chishman, G., Spatial Structure of Ionospheric Convection Velocities in Regions of Open and Closed Magnetic Field Topology, Geophys. Res. Lett., 2006, vol. 33, p. L24103; doi: 10.1029/2006GL027919.

    Article  Google Scholar 

  • Aburjania, G.D., Electromagnetic Drift Vortices in a Rotating Plasma Cylinder, Phys. Scr., 1988, vol. 38, pp. 59–63.

    Article  Google Scholar 

  • Aburjania, G.D., Structural Turbulence and Plasma Diffusion in Magnetic Traps, Fiz. Plazmy, 1990, vol. 16, no. 1, pp. 70–76.

    Google Scholar 

  • Aburjania, G.D., Samoorganizatsiya nelineinykh vikhrevykh struktur i vikhrevoi turbulentnosti v dispergiruyushchikh sredakh (Self-Organization of Nonlinear Vortex Structures and Vortex Turbulence in Dispersing Mediums), Moscow: KomKniga, URSS, 2006.

    Google Scholar 

  • Aburjania, G.D., Nonlinear Generation Mechanism for the Vortical Electric Field in Magnetized Plasma Media, Phys. Plasmas., 2007, vol. 14, pp. 1–7.

    Article  Google Scholar 

  • Alexandrova, O., Solar Wind vs Magnetosheath Turbulence and Alfvén Vortices, Nonlin. Proc. Geophys., 2008, vol. 15, pp. 95–108.

    Article  Google Scholar 

  • Biskamp, D., Magnetohydrodynamic Turbulence, Cambridge: Cambridge Univ. Press, 2003.

    Book  Google Scholar 

  • Brower, D.L., Reebles, W.A., and Luhmann, N.S., The Spectrum, Spatial Distribution and Scaling of Microturbulence in the Texas Tokamak, Nuclear Fusion, 1987, vol. 27, pp. 2055–2073.

    Article  Google Scholar 

  • Browley, T. and Mazzucato, E., Scaling of Density Fluctuations PDX, Nuclear Fusion, 1985, vol. 25, pp. 507–524.

    Article  Google Scholar 

  • Chaston, C.C., Carlson, C.W., Ergun, R.E., and McFadden, J.P., FAST Observations of Inertial Alfvén Waves in the Dayside Aurora, Geophys. Res. Lett., 1999, vol. 26, pp. 647–650.

    Article  Google Scholar 

  • Chmyrev, V.M., Marchenko, V.A., Pokhotelov, O.A., Streltsov, A.V., and Stenn, A., Vortex Structures in the Ionosphere and the Magnetosphere of the Earth, Planet. Space Sci., 1991, vol. 39, pp. 1025–1037.

    Article  Google Scholar 

  • Diamond, P.H. and Carreras, V.A., On Mixing Length Theory and Saturated Turbulence, Comm. Plasma Phys. Contr. Fusion, 1987, vol. 10, pp. 271–278.

    Google Scholar 

  • Dupree, T.N., Theory of Phase Space Density Granulation on Plasma, Phys. Fluids, 1972, vol. 15, pp. 334–344.

    Article  Google Scholar 

  • Galeev, A.A. and Sagdeev, R.Z., Nonlinear Plasma Theory, Vopr. Teor. Plazmy, 1976, no. 7, pp. 3–145.

  • Gekelman, W., Review of Laboratory Experiments on Alfvén Waves and Their Relationship to Space Observations, J. Geophys. Res., 1999, vol. 104, no. 7, pp. 14417–14435.

    Article  Google Scholar 

  • Ginzburg, V.L., Rasprostranenie elektromagnitnykh voln v plazme (Propagation of Electromagnetic Waves in Plasmas), Moscow: Nauka, 1967.

    Google Scholar 

  • Goldman, M.V., Strong Turbulence of Plasma Waves, Rev. Mod. Phys., 1984, vol. 56, no. 4, pp. 709–735.

    Article  Google Scholar 

  • Gruzinov, A.V. and Pogutse, O.P., Description of Plasma Turbulence in a Strong Magnetic Field, Dokl. Akad. Nauk SSSR, 1986, vol. 290, pp. 322–325.

    Google Scholar 

  • Horton, W., Drift Turbulence and Anomalous Transfer, in Osnovy fiziki plazmy (Plasma Physics Fundamentals), issue 2, Galeev, A.A. and Sudan, R., Eds., Moscow: Energoatomizdat, 1985, pp. 362–433.

    Google Scholar 

  • Horton, W., Nonlinear Drift Waves and Transport in Magnetized Plasma, Austin: Inst. Fus. Stud. Univ. Texas, 1990.

    Google Scholar 

  • Huld, T., Lizuka, S., and Pecsel, H.L., Experimental Investigation of Flute-Type Electrostatic Turbulence, Plasma Phys. Control. Fus., 1988, vol. 30, pp. 1297–1318.

    Article  Google Scholar 

  • Isichenko, M.B., Kalda, Ya.L., Tatarinova, E.B., Telkovskaya, O.V., and Yankov, V.V., Diffusion in a Medium with Vortex Motion, Zh. Eksp. Teor. Fiz., 1980, vol. 96, no. 3, pp. 913–925.

    Google Scholar 

  • Kadomtsev, B.B., Plasma Turbulence, Vopr. Teor. Plazmy, 1964, no. 4, pp. 188–339.

  • Kadomtsev, B.B. and Pogutse, O.P., Theory of Electron Transfer Processes in a Strong Magnetic Field, Pis’ma Zh. Eksp. Teor. Fiz., 1984, vol. 39, no. 5, pp. 225–228.

    Google Scholar 

  • Kingsep, A.S., Rudakov, L.I., and Sudan, R.N., Spectra of Strong Langmuir Turbulence, Phys. Rev. Lett., 1973, vol. 31, no. 25, pp. 1482–1484.

    Article  Google Scholar 

  • Larichev, V.D. and Reznik, G.M., On Two-Dimensional Solitary Rossby Waves, Dokl. Akad. Nauk SSSR, 1976, vol. 231, no. 5, pp. 1077–1079.

    Google Scholar 

  • Liewer, P.C., Measurement of Microturbulence in Tokamaks and Comparison with Theories of Turbulence and Anomalous Transport, Nuclear Fusion, 1985, vol. 25, pp. 543–621.

    Article  Google Scholar 

  • Litvak, A.G., Dynamic Nonlinear Electromagnetic Phenomena in Plasma, Vopr. Teor. Plazmy, 1980, no. 10, pp. 164–242.

  • Lysak, R.L., Electromagnetic Coupling of the Magnetosphere and Ionosphere, Space Sci. Rev., 1990, vol. 52, pp. 33–87.

    Article  Google Scholar 

  • Mikhailovskaya, L.A., Nonlinear Dynamics of Dipole Drift Plasma Vortices, Fiz. Plazmy, 1986, no. 7, pp. 879–881.

  • Mikhailovskii, A.B. and Pokhotelov, O.A., Effect of Helicons and Ion Cyclotron Oscillations on Alfvén Waves Intensified in Magnetospheric Plasma, Fiz. Plazmy, 1975, vol. 1, no. 6, pp. 1004–1012.

    Google Scholar 

  • Mikhailovskii, A.B., Aburjania, G.D., Lakhin V.P., Mikhailivskaya, L.A., and Onishenko, O.G., On the Theory of Alfvén Waves, Plasma Phys. Contr. Fusion, 1987, vol. 29, pp. 1–25.

    Article  Google Scholar 

  • Narita, Y., Glassmeier, K.-H., Franz, M., Nariyuki, Y., and Hada, T., Observation of Linear and Nonlinear Processes in the Foreshock Wave Evolution, Nonlinear Processes Geophys., 2007, vol. 14, pp. 361–371.

    Article  Google Scholar 

  • Nezlin, M.V., Vikhri Rossbi i spiral’nye struktury (Rossby Vortices and Spiral Structures), Moscow: Nauka, 1990.

    Google Scholar 

  • Pecseli, H.L., Rasmussen, J.T., and Thomsen, K., Nonlinear Interaction of Convective Cells in Plasmas, Phys. Rev. Lett., 1984, vol. 52, pp. 2148–2151.

    Article  Google Scholar 

  • Petviashvili, V.I. and Pokhotelov, O.A., Uedinennye volny v plazme i atmosfere (Solitary Waves in Plasmas and in the Atmosphere), Moscow: Energoatomizdat, 1989.

    Google Scholar 

  • Petviashvili, V.I. and Yankov, V.V., Solitons and Turbulence, Vopr. Teor. Plazmy, 1985, no. 14, pp. 3–55.

  • Qian, J., Nonequilibrium Statistical Mechanics of Two-Dimensional Turbulence, Phys. Fluids, 1984, vol. 27, pp. 2412–2417.

    Article  Google Scholar 

  • Rosenbluth, M.N., Berk, H.L., and Doxas, I., Effective Diffusion in Laminar Convective Flows, Phys. Fluids, 1987, vol. 30, pp. 2636–2647.

    Article  Google Scholar 

  • Sahraoui, F., Belmont, G., Pincon, J.L., Rezeau, A., Robert, P., and Cornilleau-Wehrlin, N., ULF Wave Identification in the Magnetosheath: New Insights, Ann. Geophys., 2004, vol. 22, pp. 2283–2288.

    Article  Google Scholar 

  • Sahraoui, F., Belmon, G., Rezeau, L., Cornilleau-Wehrlin, J.L., and Balogh, A., Anisotropic Turbulent Spectra in the Terrestrial Magnetosheath as Seen by the Cluster Spacecraft, Phys. Rev. Lett., 2006, vol. 96, p. 075002.

  • Semet, A., Mase, A., Peebles, W.A., Luhmann, N.C., and Zweben, S., Study of Low-Frequency Microturbulence in the Microtor Tokamak by Far-Infrared Laser Scattering, Phys. Rev. Lett., 1980, vol. 44, pp. 1411–1414.

    Article  Google Scholar 

  • Shapiro, V.D. and Shevchenko, V.I., Strong Turbulence of Plasma Oscillations, in Osnovy fiziki plazmy (Plasma Physics Fundamentals), issue 2, Galeev, A.A, and Sudan, R., Eds., Moscow: Energoatomizdat, 1984, pp. 119–173.

    Google Scholar 

  • Stasiewicz, K., Bellan, P., Chaston, C., Lysak, R., Maggs, J., Pokhotelov, O.A., Seyler, C., Shukla, P., Stenflo, L., Streltasov, A., and Wahlund, J.-E., Small Scale Alfvénic Structure in the Aurora, Space Sci. Rev., 2000, vol. 92, pp. 423–533.

    Article  Google Scholar 

  • Sundkvist, D., Vaivads, A., Andre, M., Wahlund, J.-E., Hobara, Y., Joka, S., Krasnoselskikh, V.V., Bogdanova, Y.V., Buchert, S.C., Cornilleau-Wehrlin, N., Fazakerely, A., Hall, J.-O., Reme, H., and Strenberg, G., Multi-Spacecraft Determination of Wave Characteristics near the Proton Gyrofrequency in High-Altitude Cusp, Ann. Geophys., 2005, vol. 23, pp. 983–995.

    Article  Google Scholar 

  • Sutirin, G.G., Long-Lived Planetary Vortices and Their Evolution: Conservative Intermediate Geostrophic Model, CHAOS, 1994, vol. 4, pp. 203–212.

    Article  Google Scholar 

  • Tu, C.P. and Marsch, E., MHD Structures, Waves and Turbulence in the Solar Wind: Observations and Theories, Kluwer: Academic, 1997.

    Google Scholar 

  • Waltz, R.E., Subcritical Magnetohydrodynamic Turbulence, Phys. Rev. Lett., 1985, vol. 55, pp. 1098–1101.

    Article  Google Scholar 

  • Weiland, J., Nonlinear Excitation of Convection Cells and Anomalous Diffusion in Inhomogeneous Plasmas, Phys. Rev. Lett., 1977, vol. 44, pp. 1411–1414.

    Article  Google Scholar 

  • Weissen, N., Hollenstein, Sh., and Venn, K., Turbulent Density Fluctuations in the TCA Tokamak, Plasma Phys. Contr. Fusion, 1988, vol. 30, pp. 293–309.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Aburjania.

Additional information

Original Russian Text © G.D. Aburjania, 2011, published in Geomagnetizm i Aeronomiya, 2011, Vol. 51, No. 6, pp. 736–745.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aburjania, G.D. Formation of strong stationary vortex turbulence in the terrestrial magnetosheath. Geomagn. Aeron. 51, 720–729 (2011). https://doi.org/10.1134/S0016793211060028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793211060028

Keywords

Navigation