Skip to main content
Log in

Properties of electric turbulence in the polar cap ionosphere

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Small-scale (scales of ∼0.5–256 km) electric fields in the polar cap ionosphere are studied on the basis of measurements of the Dynamics Explorer 2 (DE-2) low-altitude satellite with a polar orbit. Nineteen DE-2 passes through the high-latitude ionosphere from the morning side to the evening side are considered when the IMF z component was southward. A rather extensive polar cap, which could be identified using the ɛ-t spectrograms of precipitating particles with auroral energies, was formed during the analyzed events. It is shown that the logarithmic diagrams (LDs), constructed using the discrete wavelet transform of electric fields in the polar cap, are power law (μ ∼ s α). Here, μ is the variance of the detail coefficients of the signal discrete wavelet transform, s is the wavelet scale, and index α characterizes the LD slope. The probability density functions PE, s) of the electric field fluctuations δE observed on different scales s are non-Gaussian and have intensified wings. When the probability density functions are renormalized, that is constructed of δE/s γ, where γ is the scaling exponent, they lie near a single curve, which indicates that the studied fields are statistically self-similar. In spite of the fact that the amplitude of electric fluctuations in the polar cap is much smaller than in the auroral zone, the quantitative characteristics of field scaling in the two regions are similar. Two possible causes of the observed turbulent structure of the electric field in the polar cap are considered: (1) the structure is transferred from the solar wind, which is known to have turbulent properties, and (2) the structure is generated by convection velocity shears in the region of open magnetic field lines. The detected dependence of the characteristic distribution of turbulent electric fields over the polar cap region on IMF B y and the correlation of the rms amplitudes of δE fluctuations with IMF B z and the solar wind transfer function (B y 2 + B z 2)1/2sin(θ/2), where θ is the angle between the geomagnetic field and IMF reconnecting on the dayside magnetopause when IMF B z < 0, together with the absence of dependence on the IMF variability are arguments for the second mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel, G.A., Freeman, M.P., Chisham, G., and Watkins, N.W., Investigating Turbulent Structure of Ionospheric Plasma Velocity Using the Halley SuperDARN Radar, Nonlin. Processes Geophys., 2007, vol. 14, pp. 799–809.

    Article  Google Scholar 

  • Abel, G.A., Freeman, M.P., and Chisham, G., Spatial Structure of Ionospheric Convection Velocities in Regions of Open and Closed Magnetic Field Topology, Geophys. Res. Lett., 2006, vol. 33, GL027919.

    Article  Google Scholar 

  • Abry, P., Flandrin, P., Taqqu, M.S., and Veitch, D., Wavelets for the Analysis, Estimation and Synthesis of Scaling Data, in Self-Similar Network Traffic and Performance Evaluation, Park, K. and Willinger, W., Eds., Hoboken: Wiley-Interscience, 2000, p. 39.

    Chapter  Google Scholar 

  • Antonova, E.E. and Ovchinnikov, I.L., Magnetostatically Equilibrated Plasma Sheet with Developed Medium-Scale Turbulence: Structure and Implications for Substorm Dynamics, J. Geophys. Res., 1999, vol. 104, pp. 17289–17297.

    Article  Google Scholar 

  • Antonova, E.E., Magnetostatic Equilibrium and Turbulent Transport in Earth’s Magnetosphere: A Review of Experimental Observation Data and Theoretical Approach, Int. J. Geomagn. Aeron., 2002, vol. 3, no. 2, pp. 117–130.

    Google Scholar 

  • Basu, S., MacKenzie, E., Fougere, P.F., Coley, W.R., Maynard, N.C., Winningham, J.D., Sugiura, M., Hanson, W.B., and Hoegy, W.R., Simultaneous Density and Electric Field Fluctuation Spectra Associated with Velocity Shears in the Auroral Oval, J. Geophys. Res., 1988, vol. 93A, pp. 115–136.

    Article  Google Scholar 

  • Belenkaya, E.S., Vliyanie mezhplanetnogo magnitnogo polya na formirovanie magnitosfery (Effect of the Interplanetary Magnetic Field on the Formation of the Magnetosphere), Moscow: VINITI, 2002.

    Google Scholar 

  • Borovsky, J.E. and Funsten, H.O., MHD Turbulence in the Earth’s Plasma Sheet: Dynamics, Dissipation, and Driving, J. Geophys. Res., 2003, vol. 108, JA009625.

    Google Scholar 

  • Chang, T., Tam, S.W.Y., and Wu, C.C., Complexity Induced Anisotropic Bimodal Intermittent Turbulence in Space Plasma, Phys. Plasmas, 2004, vol. 11, pp. 1287–1299.

    Article  Google Scholar 

  • Chisham, G. and Freeman, M.P., An Investigation of Latitudinal Transitions in the SuperDARN Doppler Spectral Width Parameter at Different Magnetic Local Times, Ann. Geophys., 2004, vol. 22, pp. 1187–1202.

    Article  Google Scholar 

  • Dubinin, E.M., Volokitin, A.S., Israilevich, P.L., and Nikolaeva, N.S., Auroral Electromagnetic Disturbances at Altitudes of 900 km: Alfvén Wave Turbulence, Planet. Space Sci., 1988, vol. 36, no. A10, pp. 949–962.

    Article  Google Scholar 

  • Earle, G.D. and Kelley, M.C., Spectral Evidence for Stirring Scales and Two-Dimensional Turbulence in the Auroral Ionosphere, J. Geophys. Res., 1993, vol. 98, no. 7, p. 11543–11548.

    Article  Google Scholar 

  • Efron, B., The Jackknife, the Bootstrap, and Other Resampling Plans, in Society for Industrial and Applied Mathematics, Philadelphia, 1982.

  • Frisch, U., Turbulence: The Legacy of A.N. Kolmogorov, New York: Cambridge Univ. Press, 1995.

    Google Scholar 

  • Goldstein, M.L. and Roberts, D.A., Magnetohydrodynamic Turbulence in the Solar Wind, Phys. Plasma, 1999, vol. 6, no. 11, pp. 4154–4160.

    Article  Google Scholar 

  • Golovchanskaya, I.V., Kozelov, B.V., Sergienko, T.I., Brändström, U., Nilsson, H., and Sandahl, I., Scaling Behavior of Auroral Luminosity Fluctuations Observed by Auroral Large Imaging System (ALIS), J. Geophys. Res., 2008, vol. 113, A10303.

    Article  Google Scholar 

  • Golovchanskaya, I.V., Ostapenko, A.A., and Kozelov, B.V., Relationship between the High-Latitude Electric and Magnetic Turbulence and the Birkeland Field-Aligned Currents, J. Geophys. Res., 2006, vol. 111, A12301.

    Article  Google Scholar 

  • Gonzales, W.D. and Mozer, F.S., A Quantitative Model for the Potential Resulting from Reconnection with an Arbitrary Interplanetary Magnetic Field, J. Geophys. Res., 1974, vol. 79, no. 28, pp. 4186–4194.

    Article  Google Scholar 

  • Heppner, J.P., Liebrecht, M.C., Maynard, N.C., and Pfaff, R.F., High-Latitude Distributions of Plasma Waves and Spatial Irregularities from DE-2 Alternating Current Electric Field Observations, J. Geophys. Res., 1993, vol. 98, pp. 1629–1652.

    Article  Google Scholar 

  • Hnat, B., Chapman, S.C., and Rowlands, G., Scaling and a Fokker-Plank Model for Fluctuations in Geomagnetic Indices and Comparison with Solar Wind as Seen by Wind and ACE, J. Geophys. Res., 2005, vol. 110, A08206.

    Article  Google Scholar 

  • Kintner, P.M. and Seyler, C.E., The Status of Observation and Theory of High Latitude Ionospheric and Magnetospheric Plasma Turbulence, Space Sci. Rev., 1985, vol. 41, pp. 91–128.

    Article  Google Scholar 

  • Kintner, P.M., Jr., Observations of Velocity Shear Driven Plasma Turbulence, J. Geophys. Res., 1976, vol. 81, pp. 5114–5122.

    Article  Google Scholar 

  • Knudsen, D.J., Kelley, M.C., Earle, G.D., Vickrey, J.F., and Boehm, M., Distinguishing Alfvén Waves from Quasi-Static Field Structures Associated with the Discrete Aurora: Sounding Rocket and HILAT Satellite Measurements, Geophys. Res. Lett., 1990, vol. 17, pp. 921–924.

    Article  Google Scholar 

  • Kolmogorov, A.N., Dissipation of Energy in locally Isotropic Turbulence, Dokl. Akad. Nauk SSSR, 1941, vol. 32, pp. 16–18 (reprinted in Proc. R. Soc. London, 1991, vol. A434, pp. 15–17.)

    Google Scholar 

  • Kozelov, B.V. and Golovchanskaya, I.V., Derivation of Aurora Scaling Parameters from Ground-Based Imaging Observations: Numerical Tests, J. Geophys. Res., 2010, vol. 115, A02204.

    Article  Google Scholar 

  • Kozelov, B.V. and Golovchanskaya, I.V., Scaling of Electric Field Fluctuations Associated with the Aurora during Northward IMF, Geophys. Res. Lett., 2006, vol. 33, L20109.

    Article  Google Scholar 

  • Kozelov, B.V., Golovchanskaya, I.V., Ostapenko, A.A., and Fedorenko, Y.V., Wavelet Analysis of High-Latitude Electric and Magnetic Fluctuations Observed by the Dynamic Explorer 2 Satellite, J. Geophys. Res., 2008, vol. 113, A03308.

    Article  Google Scholar 

  • Kraichnan, R.H., Inertial Ranges in Two-Dimensional Turbulence, Phys. Fluids, 1967, vol. 10, p. 1417.

    Article  Google Scholar 

  • Maynard, N.C., Bielecki, E.A., and Burdick, H.F., Instrumentation for Vector Electric Field Measurements from DE-B, Space Sci. Instr., 1981, vol. 5, pp. 523–534.

    Google Scholar 

  • Mozer, F.S. and Serlin, R., Magnetospheric Electric Field Measurements with Balloons, J. Geophys. Res., 1969, vol. 74, pp. 4739–4754.

    Article  Google Scholar 

  • Mozer, F.S., Power Spectra of the Magnetospheric Electric Field, J. Geophys. Res., 1971, vol. 76, pp. 3651–3667.

    Article  Google Scholar 

  • Pokhotelov, O.A., Onishchenko, O.G., Sagdeev, R.Z., and Treumann, R.A., Nonlinear Dynamics of Inertial Alfvén Waves in the Upper Ionosphere: Parametric Generation of Electrostatic Convective Cells, J. Geophys. Res., 2003, vol. 108A, p. 1291.

    Article  Google Scholar 

  • Potemra, T.A., Sources of Large-Scale Birkeland Currents, in Physical Signatures of Magnetospheric Boundary Layer Processes, Holtet, J.A. and Egeland, A., Eds., 1994, pp. 3–27.

  • Rossolenko, S.S., Antonova, E.E., Ermolaev, Yu.I., Verigin, M.I., Kirpichev, I.P., and Borodkova, N.L., Turbulent Fluctuations of Plasma and Magnetic Field Parameters in the Magnetosheath and Formation of the Low-Latitude Boundary Layer: Multisatellite Observations on March 2, 1996, Kosm. Issled., 2008, vol. 46, no. 5, pp. 387–397.

    Google Scholar 

  • Sabatini, A.M., Wavelet-Based Estimation of 1/f-Type Signal Parameters: Confidence Intervals Using the Bootstrap, IEEE Trans. Signal Proc., 1999, vol. 47, no. 12, pp. 3406–3409.

    Article  Google Scholar 

  • Stepanova, M.V., Antonova, E.E., and Troshichev, O., Intermittency of Magnetospheric Dynamics through Non-Gaussian Distribution Function of PC-Index Fluctuations, Geophys. Res. Lett., 2003, vol. 30, no. 3, p. 1127.

    Article  Google Scholar 

  • Sugiura, M., Maynard, N.C., Farthing, W.H., Heppner, J.P., Ledley, B.G., and Cahill, Jr. L.G., Initial Results on the Correlation between the Magnetic and Electric Fields Observed from the DE-2 Satellite in the Field-Aligned Current Regions, Geophys. Res. Lett., 1982, vol. 9, no. 9, pp. 985–988.

    Article  Google Scholar 

  • Tam, S., Chang, W.Y., Kintner, P.M., and Klatt, E., Intermittency Analyses on the SIERRA Measurements of the Electric Field Fluctuations in the Auroral Zone, Geophys. Res. Lett., 2005, vol. 32, L05109.

    Article  Google Scholar 

  • Temerin, M., The Polarization, Frequency, and Wave-lengths of High-Latitude Turbulence, J. Geophys. Res., 1978, vol. 83, no. 6, pp. 2609–2616.

    Article  Google Scholar 

  • Volokitin, A.S. and Dubinin, E.M., The Turbulence of Alfvén Waves in the Polar Magnetosphere of the Earth, Planet. Space Sci., 1989, vol. 37, no. 7, pp. 761–765.

    Article  Google Scholar 

  • Vörös, Z., et al., Magnetic Turbulence in the Plasma Sheet, J. Geophys. Res., 2004, vol. 109, A11215.

    Article  Google Scholar 

  • Watanabe, M., Constitution of Dayside Field-Aligned Current Systems, Int. J. Geomagn. Aeron., 2000, vol. 2, no. 1, pp. 1–10.

    Google Scholar 

  • Watanabe, M., Iijima, T., and Rich, F.J., Synthetic Models of Dayside Field-Aligned Currents for Strong Interplanetary Magnetic Field By, J. Geophys. Res., 1996, vol. 101, no. 6, p. 13 303.

    Article  Google Scholar 

  • Weimer, D.R., Goertz, C.K., and Gurnett, D.A., Auroral Zone Electric Fields from DE 1 and 2 at Magnetic Conjunctions, J. Geophys. Res., 1985, vol. 90A, pp. 7479–7494.

    Article  Google Scholar 

  • Wendt, H., Abry, P., and Jaffard, S., Bootstrap for Empirical Multifractal Analysis, IEEE Signal Proc. Mag. July, 2007, pp. 38–48.

  • Winningham, J.D., Burch, J.L., Eaker, N., Blevins, V.A., and Hoffman, R.A., The Low Altitude Plasma Instrument (LAPI), Space Sci. Instrum., 1981, vol. 5, pp. 465–475.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Golovchanskaya.

Additional information

Original Russian Text © I.V. Golovchanskaya, B.V. Kozelov, 2010, published in Geomagnetizm i Aeronomiya, 2010, Vol. 50, No. 5, pp. 603–615.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golovchanskaya, I.V., Kozelov, B.V. Properties of electric turbulence in the polar cap ionosphere. Geomagn. Aeron. 50, 576–587 (2010). https://doi.org/10.1134/S001679321005004X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001679321005004X

Keywords

Navigation