Skip to main content
Log in

Determining the ionospheric irregularity velocity vector based on doppler measurements in the artificially modified F 2 region of the polar ionosphere

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The method for estimating the behavior of the ionospheric irregularity motion vector in the artificially disturbed HF ionospheric region has been proposed, and this behavior has been analyzed based on the simultaneous Doppler observations performed on several paths using the method of bi-static backscatter of diagnostic HF signals by small-scale artificial ionospheric irregularities. The Doppler measurements were performed during the modification of the auroral ionosphere by powerful HF radiowaves emitted by the EISCAT heating facility (Tromsø, Norway). It has been obtained that the dynamics of the ionospheric irregularity directions in the F region, calculated based on the Doppler measurements of the total vector of the ionospheric irregularity velocity above the Tromsø EISCAT radar at a frequency of 931 MHz, is in satisfactory agreement with such calculations performed using the three-position method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. F. Blagoveshchenskaya, Geophysical Effects of Active Impacts in the Near-Earth Space (Gidrometeoizdat, St. Petersburg, 2001) [in Russian].

    Google Scholar 

  2. N. F. Blagoveshchenskaya, D. V. Blagoveshchenskii, V. A. Kornienko, et al., “Ionospheric Effects during the Main Phase of the Magnetic Storm of November 20, 2003, in the European Arctic Regions,” Geomagn. Aeron. 45(1), 64–74 (2005) [Geomagn. Aeron. 45, 60–70 (2005)].

    Google Scholar 

  3. N. F. Blagoveshchenskaya, T. D. Borisova, V. A. Kornienko, et al., “Artificial Field-Aligned Irregularities in the Nightside Auroral Ionosphere,” Adv. Space Res. (2006a).

  4. N. F. Blagoveshchenskaya, V. A. Kornienko, A. Brekke, et al., “Phenomena Observed by HF Long-Distance Tools in the HF Modified Auroral Ionosphere during Magnetospheric Substorm,” Radio Sci. 34, 715–724 (1999).

    Article  Google Scholar 

  5. N. F. Blagoveshchenskaya, V. A. Kornienko, A. V. Petlenko, et al., “Geophysical Phenomena during an Ionospheric Modification Experiment at Tromsø,” Ann. Geophys. 16, 1212–1225 (1998).

    Article  Google Scholar 

  6. N. F. Blagoveshchenskaya, V. A. Kornienko, T. D. Borisova, et al., “Heater-Induced Phenomena in a Coupled Ionosphere-Magnetosphere System,” Adv. Space Res. (2006b).

  7. T. D. Borisova, N. F. Blagoveshchenskaya, I. V. Moskvin, et al., “Doppler Shift Simulation of Scattered HF Signals during the Tromsø HF Pumping Experiment on 16 February, 1996,” Ann. Geophys. 20, 1479–1486 (2002).

    Article  Google Scholar 

  8. T. D. Borisova, N. F. Blagoveshchenskaya, V. A. Kornienko, et al., “Ionospheric Effects Observed when the Tromsø HF Heating Facility Was Turned on/off,” Geomagn. Aeron. 45(3), 390–397 (2005) [Geomagn. Aeron. 45, 367–374 (2005)].

    Google Scholar 

  9. F. T. Djuth, R. J. Jost, S. T. Noble, et al., “Observations of E Region Irregularities Generated at Auroral Latitudes by a High Power Radio Wave,” J. Geophys. Res. 90, 12293–12306 (1985).

    Google Scholar 

  10. P. Eglitis, T. R. Robinson, M. T. Rietveld, et al., “The Phase Speed of Artificial Field-Aligned Irregularities Observed by CUTLASS during HF Modification of the Auroral Ionosphere,” J. Geophys. Res. 103, 2253–2259 (1998).

    Article  Google Scholar 

  11. L. M. Erukhimov, S. A. Metelev, E. E. Mityakova, et al., “Experimental Studies of Artificial Ionospheric Turbulence,” in Thermal Nonlinear Phenomena in Plasma, Ed. by V. Yu. Trakhtengerts (Inst. Prikl. Fiz. AN SSSR, Gor’kii, 1979) [in Russian].

    Google Scholar 

  12. B. N. Gershman, L. M. Erukhimov, and Yu. Ya. Yashin, Wave Phenomena in the Ionosphere and Space Plasma (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  13. S. M. Grach and V. Yu. Trakhtengerts, “On Parametric Excitation of Field-Aligned Ionospheric Irregularities,” Izv. Vyssh. Uchebn. Zaved., Radiofiz. 18, 1288–1296 (1975).

    Google Scholar 

  14. A. V. Gurevich and A. B. Shvartsburg, The Nonlinear Theory of the Propagation of Radio Waves in the Ionosphere (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  15. A. V. Gurevich, Nonlinear Phenomena in the Ionosphere (Springer, New York, 1978).

    Google Scholar 

  16. A. V. Gurevich, H. Carlson, and K. P. Zybin, “Nonlinear Structuring and Southward Shift of a Strongly Heated Region in Ionospheric Modification,” Phys. Lett. A 288(3–4), 231–239 (2001).

    Article  Google Scholar 

  17. A. Hedberg, H. Derblom, B. Thidé, et al., “Observations of HF Backscatter Associated with the Heating Experiment at Tromsø,” Radio Sci. 18, 840–850 (1983).

    Google Scholar 

  18. A. Hedberg, H. Derblom, G. Holmgren, et al., “Measurements of HF Backscatter Cross Section for Striations Created by Ionospheric Heating at Different Power Levels,” Radio Sci. 21, 117–125 (1986).

    Google Scholar 

  19. F. Honary, T. R. Robinson, D. M. Wright, et al., “First Direct Observation of the Reduced Striations at Pump Frequencies Close to the Electron Gyroharmonic,” Ann. Geophys. 17, 1235–1238 (1999).

    Google Scholar 

  20. A. V. Koloskov, V. S. Belei, T. B. Leizer, and Yu. M. Yampol’skii, “Radial Drift of Stimulated Small-Scale Ionospheric Irregularities across the Geomagnetic Field,” Radiofiz. Radioastron. 4(3), 247–260 (1999).

    Google Scholar 

  21. S. T. Noble, F. T. Djuth, R. J. Jost, et al., “Multiple Frequency Radar Observations of High-Latitude E Region Irregularities in the HF Modified Ionosphere,” J. Geophys. Res. 92, 13613–13627 (1987).

    Article  Google Scholar 

  22. M. T. Rietveld, H. Kohl, H. Kopka, and P. Stubbe, “Introduction to Ionospheric Heating at Tromsø—I. Experimental Overview,” J. Atmos. Terr. Phys. 55, 577–599 (1993).

    Article  Google Scholar 

  23. M. T. Rietveld, M. J. Kosch, N. F. Blagoveshchenskaya, et al., “Ionospheric Electron Heating, Aurora and Striations Induced by Powerful HF Radio Waves at High Latitudes: Aspect Angle Dependence,” J. Geophys. Res. 108A, 1141 (2003).

    Article  Google Scholar 

  24. A. J. Stocker, J. F. Honary, T. R. Robinson, et al., “EISCAT Observation of Large Scale Electron Temperature and Electron Density Perturbations Caused by High Power HF Radio Waves,” J. Atmos. Terr. Phys. 54, 1555–1572 (1992).

    Article  Google Scholar 

  25. V. P. Uryadov, G. G. Vertogradov, V. G. Vertogradov, et al., “Radar Observations of Artificial Ionospheric Turbulence during Magnetic Storm,” Izv. Vyssh. Uchebn. Zaved., Radiofiz. 47(9), 722–738 (2004).

    Google Scholar 

  26. V. V. Vas’kov and A. V. Gurevich, “Nonlinear Resonance Plasma Instability in the Field of Ordinary Electromagnetic Wave,” Zh. Eksp. Teor. Fiz. 69, 176–188 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © T.D. Borisova, N.F. Blagoveshchenskaya, V.A. Kornienko, M. T. Rietveld, 2007, published in Geomagnetizm i Aeronomiya, 2007, Vol. 47, No. 1, pp. 80–89.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borisova, T.D., Blagoveshchenskaya, N.F., Kornienko, V.A. et al. Determining the ionospheric irregularity velocity vector based on doppler measurements in the artificially modified F 2 region of the polar ionosphere. Geomagn. Aeron. 47, 76–84 (2007). https://doi.org/10.1134/S0016793207010124

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793207010124

PACS numbers

Navigation