Skip to main content
Log in

Variability of Stishovite Genesis under Terrestrial Conditions: Physicogeochemical Aspects

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

A model of the genesis of stishovite and other SiO2 phases in terrestrial matter is developed; it combines the physicochemical and geodynamic conditions of their formation. Based on the experimental data, a P–T diagram of SiO2 polymorphs in combination with the boundaries of geospheres and geotherm was plotted. Stishovite and other SiO2 phases of cosmic-impact synthesis were buried in the early Earth during the period of meteorite accretion (50 Ma). These SiO2 phases are completely assimilated by melts of the pyrolite global magma ocean that existed for 500 Ma. By 2.0 Ga, the magma ocean crystallized, and the Earth’s crust, upper mantle, transition zone, and lower mantle with layer D” (with seismic boundaries between them) were formed. During this period, the main mass of the Earth’s core was separated, which completed by 2.7 Ga. As a result, the gravitational field intensified, which contributed to the fractional ultramafic–mafic evolution of mantle magmas with peritectic reactions of ringwoodite–akimotoite in the transition zone and bridgmanite in the lower mantle with melts and the formation of stishovite (shown experimentally at 20 and 26 GPa). These reactions in diamond-forming carbonate–silicate–carbon melts provided the formation of stishovite, which was captured as a paragenetic inclusion by diamonds and transported to the Earth’s surface by magmas. The genesis of stishovite under the terrestrial conditions is controlled by global mantle convection as well. The subduction of lithospheric plates to layer D'' near the liquid core was accompanied by the formation of stishovite, and then its transformation into poststishovite phases. When superplumes rise from layer D'' to the Earth’s crust, the peritectic reactions of postperovskite and bridgmanite, and then ringwoodite–akimotoite, with melts are likely to form stishovite and cause its subsequent transformation into low-pressure SiO2 phases. With the emergence of the Earth’s crust, the impact-meteorite genesis of stishovite resumes. Stishovite that formed under the terrestrial conditions appears as an inclusion in ultradeep diamonds on the Earth’s surface. Stishovite of cosmic-impact synthesis is preserved in meteorite craters. In both cases, stishovite is a metastable phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Notes

  1. Mineral symbols were recommended by the Commission on New Minerals, Nomenclature, and Classification of the International Mineralogical Association (Warr, 2021).

REFERENCES

  1. Y. Abe, “Thermal and chemical evolution of the terrestrial magma ocean,” Phys. Earth Planet. Inter. 100 (1–4), 27–39 (1997).

    Article  CAS  Google Scholar 

  2. M. Akaogi, “Phase transitions of minerals in the transition zone and upper part of the lower mantle,” In: Advances in High-Pressure Mineralogy, Ed. by E. Ohtani, Geol. Soc. Am. Spec. Pap. 421, 1–15 (2007).

  3. M. Akaogi and A. Navrotsky, “The quartz-coesite-stishovite transformations: new calorimetric measurements and calculation of phase diagrams,” Phys. Earth Planet. Inter. 36 (2), 124–134 (1984).

    Article  CAS  Google Scholar 

  4. S.-I. Akimoto and Y. Syono, “Coesite-stishoite transition,” J. Geophys. Res. 74 (6), 1653–1659 (1969).

    Article  CAS  Google Scholar 

  5. D. Andrault, C. Fiquet, F Guot, and M. Hanfland, “Pressure-induced Landau-type transition in stishovite,” Science 282 (5389), 720–724 (1998).

    Article  CAS  Google Scholar 

  6. D. Andrault, N. Bolfan-Casanova, G. L. Nigro, M. A. Boufild, G. Garbarino, and M. Mezouar, “Solidus and liquidus profiles of hondritic mantle: Implication for melting of the Earth across its history,” Earth Planet. Sci. Lett. 304 (1), 251–259 (2011).

    Article  CAS  Google Scholar 

  7. K. Armstrong, D. J. Frost, C. A. McCammon, D. C. Rubie, and Balagan T. Boffa, “Deep magma ocean formation set the oxidation state of Earth’s mantle,” Science 365 (6456), 903–906 (2019).

    Article  CAS  Google Scholar 

  8. S. K. Bajgain, A. W. Ashley, M. Mookherjee, D. B. Ghosh, and B. B. Karki, “Insights into magma ocean dynamics from the tramsport properties of basaltc melt,” Nat. Commun. 13, 7590, 1–10 (2022).

    Article  Google Scholar 

  9. B. F. Bohor, E. E. Foord, P. J. Modreski, and D. M. Triplehorh, “Mineralogical evidence for an impact event at the cretaceous-tertiary boundary,” Science 234, 867–869 (1984).

    Article  Google Scholar 

  10. V. V. Brazhkin, R. N. Voloshin, and S. V. Popova, “The kinetics of the transition of the metastable phase of SiO2, stishovite and coesite to the amorphous state,” J Non-Crystalline Solids. 136, 241–248 (1991).

    Article  CAS  Google Scholar 

  11. R. W. Carlson, E. Garnero, and T. M. Harrison, “How did early Earth become our modern world?” Annu. Rev. Earth Planet. Sci. 42, 151–178 (2014).

    Article  CAS  Google Scholar 

  12. E. C. T. Chao, J. J. Fahey, J. Littler, and D. J. Milton, “Stishovite, SiO2, a very high pressure new mineral from Meteor Crater, Arizona,” J. Geophys. Res. 67 (1), 419–421 (1962).

    Article  CAS  Google Scholar 

  13. R. M. Davies, W. L. Griffin, S. Y. O’Reilly, at al., “Mineral inclusions and geochemical characteristics of microdiamonds from the D027, A154, A21, A418, D018, DD17 and Ranch Lake kimberlites at Las de Gras, Slave Craton, Canada,” Lithos 77 (1–4), 39–55 (2004).

    Article  CAS  Google Scholar 

  14. P. S. De Carli and J. C. Jamieson, “Formation of an amorphous form of quartz under shock conditions,” J. Chem. Phys. 31, 1675–1676 (1959).

    Article  CAS  Google Scholar 

  15. De Carli P. S. and D. J. Milton, “Stishovite: Synthesis by shock waves,” Science 147, 144–145 (1965).

    Article  CAS  Google Scholar 

  16. N. L. Dobretsov, “Global geodynamic evolution of the Earth and global geodynamic models,” Russ. Geol. Geophys. 51 (6), 592–610 (2010).

    Article  Google Scholar 

  17. L. S. Dubrovinsky, S. K. Saxena, P. Lazor, R. Ahuja, O. Eriksson, J. M. Wills, and B. Johansson, “Experimental and theoretical identification of a new high-pressure phase of silica,” Nature 388, 362–365 (1997).

    Article  CAS  Google Scholar 

  18. A. El Goresy, P. Dera, T. G. Sharp, C. T. Prewitt, M. Chen, L. Dubrovinsky, B. Wopenka, N. Z. Boctor, and R. Z. Hemley, “Seifertite, a dense polymorph of silica from the Martian meteorites Shergotty and Zagami,” Eur. J. Mineral. 20, 523–528 (2008).

    Article  CAS  Google Scholar 

  19. Encyclopedia of Earth Sciences. Volume IVB. The Encyclopedia of Mineralogia, Ed. by K. Frye (Stroudburg: Hutchinson Ross Publ. Comp., 1981).

  20. G. Fiquet, A. L. Auzende, J. Siebert, A. Corgne, H. Bureau, H. Ozava, et al., “Melting of peridotite to 140 Gigapascals,” Science 329, 1516–1518 (2010).

    Article  CAS  Google Scholar 

  21. B. Harte, J. W. Harris, M. T. Hutchison, et al., “Lower mantle mineral associations in diamonds from Sao Luiz, Brazil. In: Mantle Petrology: Field Observations and High Pressure Experimentation: A tribute to Fransis R. (Joe) Boyd, Ed. by Y. Fey et al., Geochim. Soc. Spec. Publ. 6, 125–153 (1999).

  22. H. Horiuchi, M. Hirano, E. Ito, and Y. Matsui, “MgSiO3 (ilmenite-type) single crystal X-ray diffraction study,” Am. Mineral. 67, 788–793 (1982).

    CAS  Google Scholar 

  23. G. R. Huss and R. C. Lewis, “Presolar diamond, SiC and graphite in primitive chondrites: Abundances as a function of meteorite class and petrologic type,” Geochim. Cosmochim. Acta 59, 115–160 (1995).

    Article  CAS  Google Scholar 

  24. T. Irifune and A. E. Ringwood, “Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle,” Earth. Planet. Sci. Lett. 117, 101–110 (1993).

    Article  CAS  Google Scholar 

  25. T. Irifune and T. Tsuchiya, “Mineralogy of the Earth-phase transitions and mineralogy of the lower mantle,” In: Treatise on Geophysics (Elsevier, 2007), pp. 33–62.

    Google Scholar 

  26. T. Ishii, H. Kojitani, and M. Akaogi, “Post-spinel transitions in pyrolite and Mg2SiO4 and akimotoite-perovskite transttion in MgSiO3: Precise comparison by high-pressure high-temperature experiments with multi-sample cell technique,” Earth Planet. Sci. Lett. 309 (3-4), 185–197 (2011).

    Article  CAS  Google Scholar 

  27. F. V. Kaminsky, The Earth’s Lower Mantle. Composition and Structure (Springer, 2017).

  28. F. V. Kaminsky, O. D. Zakharchenko, R. Davies, et al., “Superdeep diamonds from the Juina area, Mato Grosso State, Brazil,” Contrib. Mineral. Petrol. 140 (6), 734–753 (2001).

    Article  CAS  Google Scholar 

  29. T. Katsura, A. Yoneda, D. Yamazaki, T. Goshino, and E. Ito, “Adiabatic temperature profile in the mantle,” Phys. Earth Planet. Inter. 183, 212–218 (2010).

    Article  CAS  Google Scholar 

  30. K. J. Kingma, R. E. Kohen, R. J. Hemley, and H.-K. Mao, “Transformation of stishovite to a denser phase at lower-mantle pressures,” Nature 374, 243–245 (1995).

    Article  CAS  Google Scholar 

  31. A. A. Kirdyashkin, A. G. Kirdyashkin, V. E. Distanov, and I. N. Gladkov, “Geodynamic regimes of thermochemical mantle plumes,” Russ. Geol. Geophys. 57 (6), 858–867 (2016).

    Article  Google Scholar 

  32. E. Knittle and R. Jeanloz, “Synthesis and equation of state of (Mg, Fe)SiO3– perovskite to over 100 Gigapascals,” Science 235, 668–670 (1987).

    Article  CAS  Google Scholar 

  33. H. Kojitani, M. Yamazaki, Y. Tsunekama, S. Katsuragi, M. Noda, T. Inoue, M Inaguma, and M. Akaogi, “Enthalpy, heat capacity and thermal expansivity measurements of MgSiO3 akimotoite: Reassessment of its self–consistent thermodynamic data set,” Phys. Earth Planet. Inter. 333 (B10), 106937 (2022).

    Article  CAS  Google Scholar 

  34. M. Komatscu, T. J. Fagan, A. N. Krot, K. Nagashuma, M. I. Petaev, M. Kimura, and A. Yamaguchi, “First evidence for silica condensation,” Proc. Nat. Acad. Sci. 11S (29), 2497 (2018).

    Google Scholar 

  35. V. I. Kovalenko, V. V. Yarmolyuk, I. A. Andreeva, N. A. Ashikhmina, A. A. Kozlovskii, E. A. Kudryashova, V. A. Kuznetsov, E. N. Listratova, D. A. Lykhin, and A. V. Nikiforov, Magma Types and their Sources in the Earth’s History (IGEM RAN, Moscow, 2006), Vol. 2 [in Russian].

    Google Scholar 

  36. Y. Kuwayama, K. Hirose, S. Nagayoshi, and Y. Ohishi, “The pyrite-type high-pressure form of silica,” Science 309, 107–109 (2005).

    Article  Google Scholar 

  37. M. I. Kuzmin and V. V. Yarmolyuk, “Plate tectonics and mantle plumes as a basis of deep-seated Earth’s tectonic activity for the last 2 Ga,” Russ. Geol. Geophys. 57 (1), 8–21 (2016).

    Article  Google Scholar 

  38. Yu. A. Litvin, “High-pressure mineralogy of diamond genesis. In: Advances in High-Pressure Mineralogy, Ed. by E. Ohtani, Geol. Soc. Am. Spec. Pap. 421, 83–103 (2007).

  39. Yu. A. Litvin, “The stishovite paradox in the genesis of superdeep diamonds,” Dokl Earth Sci. 455 (1), 274–278 (2014).

    Article  CAS  Google Scholar 

  40. Yu. A. Litvin, Genesis of Diamonds and Associated Phases (Springer, 2017).

    Book  Google Scholar 

  41. Yu. A. Litvin and A. V. Kuzyura, “Peritectic reaction of olivine in the olivine–jadeite–diopside–garnet system at 6 GPa as the key mechanism of the magmatic evolution of the upper mantle,” Geochem. Int. 59 (9), 813–839 (2021).

    Article  CAS  Google Scholar 

  42. Yu. A. Litvin and A. V. Spivak, “Genesis of diamonds and paragenetic inclusions under lower mantle conditions: the liquidus structure of the parental system at 26 GPa,” Geochem. Int. 57 (2), 134–150 (2019).

    Article  CAS  Google Scholar 

  43. Yu. A. Litvin, A. V. Spivak, and L. S. Dubrovinsky, “Magmatic evolution of the Earth’s lower mantle: stishovite paradox and origin of superdeep diamonds (experiments at 24–26 GPa),” Geochem. Int. 54 (11), 936–947 (2016).

    Article  CAS  Google Scholar 

  44. Yu. A. Litvin, A. V. Spivak, and A. V. Kuzyura, “Fundamentals of the mantle carbonatite concept of diamond genesis,” Geochem. Int. 54 (10), 839–857 (2016).

    Article  CAS  Google Scholar 

  45. Yu. A. Litvin, A. V. Spivak, D. A. Simonova, and L. Dubrovinsky, “The stishovite paradox in the evolution of lower mantle magmas and diamond-forming melts (experiment at 24 and 26 GPa),” Dokl Earth Sci. 473 (5), 444–448 (2017).

    Article  CAS  Google Scholar 

  46. Yu. A. Litvin, A. V. Bovkun A.V. Kuzyura, D. A. Varlamov, E. V. Limanov, and V. K. Garanin, “Genesis of diamondiferous rocks from upper-mantle xenoliths in kimberlite,” Geochem. Int. 58 (3), 245–270 (2020).

    Article  CAS  Google Scholar 

  47. Yu. A. Litvin, A. V. Kuzyura, and A. V. Spivak, “Evolution of the mantle magmatism and formation of ultrabasic-basic rock series: importance of peritectic reactions of the rock-forming minerals,” In: Advances in Experimental and Genetic Mineralogy, Ed. by Yu. A. Litvin and O. G. Safonov (Springer Mineralogy, Cham, 2020), pp. 165–199 (2020).

    Book  Google Scholar 

  48. Yu. A. Litvin, A. V. Spivak, and A. V. Kuzyura, “Physicogeochemical evolution of melts of superplumes uplift from the lower mantle to the transition zone: experiment at 26 and 20 GPa,” Geochem. Int. 59 (7), 661–682 (2021).

    Article  CAS  Google Scholar 

  49. L. Liu, J. Zhang, H. W. Green, Z. Jin, and K. N. Bozhilov, “Evidence of former stishovite in metamorphosed sediments, implying subduction to >350 km,” Earth Planet. Sci. Lett. 263, 180–191 (2007).

    Article  CAS  Google Scholar 

  50. N. T. Lyubetskaya and I. Korenaga, “Chemical composition of Earth’s primitive mantle and its variance,” J. Geophys Res. 112, BO3211 (2007).

    Google Scholar 

  51. C. Ma, O. Tschauner, J. R. Beckett, Y. Liu, R. Rossman G.R. George, S. V. Sinogeikin, J. S. Smith, and L. A. Taylor, “Ahrensite, c-Fe2SiO4, a new shock-metamorphic mineral from the Tissint meteorite: Implications for the Tissint shock event on Mars,” Geochim. Cosmochim. Acta 184, 240–256 (2016).

    Article  CAS  Google Scholar 

  52. I. D. Macgregor and J. L. Carter, “The chemistry of clinopyroxenes and garnets of eclogite and peridotite xenoliths from the Roberts Victor Mine, South Africa,” Phys. Earth Planet. Inter. 3, 391–397 (1970).

    Article  CAS  Google Scholar 

  53. J. E. J. Martini, “Coesite and stishovite in the Vredefort Dome, South Africa,” Nature 272, 715–717 (1978).

    Article  CAS  Google Scholar 

  54. W. F. McDonough and S. Sun, “The composition of the Earth,” Chem. Geol. 120, 223–253 (1995).

    Article  CAS  Google Scholar 

  55. J. E.J. McHone, R. A. Nieman, C. F. Lewis, and A. M. Yates, “Stishovite at the Cretaceous-Tertiary boundary, Raton, New Mexico,” Science 243, 1182–1184 (1989).

    Article  CAS  Google Scholar 

  56. R. G. McQueen, J. N. Fritz, and S. R. Marsh, “On the equation of state of stishovite,” J. Geohys. Res. 68 (8), 2319–2322 (1963).

    Article  CAS  Google Scholar 

  57. M. Murakami, K. Hirose, S. Ono, and Y. Ohishi, “Stability of CaCl2-type and α-PbO2-type SiO2 at high pressure and temperature determined by in-situ X–ray measurements,” Geophys. Res. Lett. 30 (5), 1207 (2003).

    Article  Google Scholar 

  58. A. R. Oganov and S. Ono, “Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D” layer,” Nature 430, 445–448 (2004).

    Article  CAS  Google Scholar 

  59. E. Ohtani, S. Ozawa, M. Miyahara, Y. Ito, T. Mikouchi, M. Kimura, T. Arai, K. Sato, and K. Hiraga, “Coesite and stishovite in a shocked lunar meteorite, Asuka-881757, and impact events in lunar surface,” PHAS 108 (2), 463–466 (2011).

    Article  CAS  Google Scholar 

  60. S. Ono, E. Ito, and T. Katsura, “Mineralogy of subducted basaltic crust (MORB) from 25 to 37 GPa, and chemical geterogeneity of the lower mantle,” Earth Planet. Sci. Lett. 190, 57–63 (2001).

    Article  CAS  Google Scholar 

  61. J. L. B. Pressner and A. M. Sikder, Raman Spectroscopic Analysis of Diamonds and his Mineral Inclusions from “Lamproites” in the Capibary, San Pedro Dpto, Paraguay, Reprint, p. 1–18 (2002).

    Google Scholar 

  62. A. E. Ringwood, “Mineralogical constitution of the deep mantle,” J. Geophys. Res. 67 (10), 4005–4010 (1962).

    Article  CAS  Google Scholar 

  63. A. E. Ringwood, Composition and Petrology of the Earth’s Mantle (McGraw–Hill, New York, 1975).

    Google Scholar 

  64. V. S. Safronov, Evolution of Protoplanetary Nebula and Formation of the Earth and Planets (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  65. C. B. Sclar, A. P. Young, L. C. Carrison, and C. M. Schwarte, “Synthesis and optical crystallography of stishovite, a very high pressure polymorph of SiO2,” J. Geophys. Res. 67 (10), 4049–4054 (1962).

    Article  CAS  Google Scholar 

  66. T. G. Sharp, Goresy A. El, B. Wopenka, and M. Chen, “A post-stishovite SiO2 polymorph in the meteorite Shergotty: implications for impact events,” Science 284, 325–327 (1999)

    Article  Google Scholar 

  67. S. -H. Shim, T. S. Duffy, and G. Shen, “Stability and structure of MgSiO3 perovskite to 2300-kilometer depth in Earth’s mantle,” Science 293, 2063–266 (2001).

    Article  Google Scholar 

  68. I. Sidorin, M. Gurnis, and D. V. Helmberger, “Evdence for a ubiquitous discontinuity at the base of the mantle,” Science 286, 1326–1331 (1999).

    Article  CAS  Google Scholar 

  69. E. M. Smith, M. Y. Krebs, P. -T. Genzel, and F. E. Brenker, “Raman identification of inclusions in diamond,” In: Reviews in Mineralogy and Geochemistry, Mineral. Soc. Am. 88, 451–474 (2022).

  70. O. G. Sorokhtin, J. B. Chilingar, and N. O. Sorokhtin, Theory of the Earth development: Origin, Evolution, and Tragic Future (Inst. Komp. Issled., Moscow–Izhevsk, 2010) [in Russian].

    Google Scholar 

  71. A. V. Spivak and Yu. A. Litvin, Evolution of Magmatic and Diamond–Forming Systems of the Earth’s Lower Mantle (Springer Geology, 2019).

    Book  Google Scholar 

  72. T. Stachel, J. W. Harris, G. P. Brey, and W. Joswig, “Kankan diamonds (Guinea) II. Lower mantle inclusion parageneses,” Contriib. Mineral Petrol. 140 (1), 16–27 (2000).

    Article  CAS  Google Scholar 

  73. S. M. Stishov and N. V. Belov, “On crystalline structure of new dense silica modification,” Dokl. Akad. Nauk SSSR 143 (4), 951–954 (1962).

    CAS  Google Scholar 

  74. S. M. Stishov and S. V. Popova, “New dense silica modification,” Geokhimiya, No. 10, 923–926 (1961).

    Google Scholar 

  75. R. Tappert, T. Stachel, J. W. Harris, et al., “Mineral inclusions in diamonds from the Slave Province, Canada,” Eur. J. Mineral. 17 (3), 423–440 (2005).

    Article  CAS  Google Scholar 

  76. R. P. Tripathi, S. C. Mathur, G. Truptt, and D. Chandracheknaram, “Occurrence of stishovite in the Precambrian Siwana Volcanic Province, Western Rajastran, India,” Curr. Sci. 98 (1), 30–32 (2010).

    CAS  Google Scholar 

  77. O. Tschaurer, S. Hujano, S. Yang, M. Humayun, W. L. Stephanie, M. O. Corer, H. A. Bechtel, J. Tischler, and G. Rossman, “Discovery of davemaoite, CaSiO3-perovskite, as a mineral from the lower mantle,” Science 374 (6569), 891–894 (2021).

    Article  Google Scholar 

  78. Y. Tsuchiya and T. Yagi, “A new, post-stishovite high-pressure polymorph of silica,” Nature 340, 217–220 (1989).

    Article  Google Scholar 

  79. S. A. Vishnevsky, Yu. A. Dolgov, L. T. Kovaleva, and N. A. Pal’chik, “Stishovite in the rocks of the Popigai structure,” Dokl. Akad. Nauk SSSR 221 (5), 1167–1169 (1975).

    Google Scholar 

  80. J. Wackerle, “Shock-wave compression of quartz,” J. Appl. Phys. 55, 922–937 (1962).

    Article  Google Scholar 

  81. L. N. Warr, “IMA–CNMNC approved mineral symbols,” Mineral. Mag. 85 (3), 291–320 (2021).

    Article  CAS  Google Scholar 

  82. R. Wirth, C. Vollmer, F. Brenker, S. Matsyuk, and F. Kaminsky, “Nanocrystalline hydrous aluminum silicate in superdeep diamonds from Juina (Mato Grosso State, Brazil),” Earth Planet. Sci. Lett. 259 (3–4), 384–399 (2007).

    Article  CAS  Google Scholar 

  83. I. A. Yudin and V. D. Kolomenskii, Mineralogy of Meteorites (Sverdlovsk, 1987) [in Russian].

    Google Scholar 

  84. D. A. Zedgenizov, V. S. Shatskii, A. V. Panin, O. V. Evtushenko, A. L. Ragozin, and Kh. Kagi, “Evidence for phase transitions in mineral inclusions in superdeep diamonds of the Sao Luiz deposit (Brazil), Russ. Geol. Geophys. 56 (1–2), 296–305 (2015).

    Article  Google Scholar 

  85. D. A. Zedgenizov, A. L. Ragozin, H. Kagi, H. Yurimoto, and V. S. Shatsky, “SiO2 inclusions in sublithospheric diamonds,” Geochem. Int. 57, 964–972 (2019).

    Article  CAS  Google Scholar 

  86. J. Zhang, R. Liebermann, T. Gasparik, and C. T. Herzberg, “Melting and subsolidus relations of SiO2 at 9–14 GPa,” J. Geophys. Res. 98 (B11), 19785–19793 (1993).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the reviewers and the scientific editor of the paper, Dr. Sci. O.A. Lukanin, for a thorough study of the manuscript and accompanying materials of the manuscript, as well as valuable comments that ultimately made this paper better and more understandable.

We thank Acad. S.M. Stishov, who suggested that Prof. Yu.A Litvin to prepare the essay “Guest from the Earth’s Mantle,” published in the popular Nezavisimaya Gazeta on April 28, 2021, for the 60th anniversary of the discovery of stishovite (https://www.ng.ru/science) Materials and illustrations from it were used in the paper by R.C. Liebermann (2022) “My Research Connections with Russian Scientists over the Past Half Century” (International Journal of Geosciences 13, pp. 155–173).

Funding

The study was carried out at the Korzhinskii Institute of Experimental Mineralogy as a part of the research project FMUF-2022-0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Spivak.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Bobrov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

APPENDIX A

APPENDIX A

Fig. A1.
figure 9

SEM images of phases of basite associations of the L + MWus + Sti + Dvm transition zone at 1200°C: (a) L + MWus + Sti at 1400°C; (b) as a result of quenching experimental samples with compositions corresponding to the monovariant cotectic L + MWus + Sti+ Dvm at 20 GPa by data of (Litvin et al, 2021).

Fig. A2.
figure 10

SEM images of experimental samples during melting of the PerStiWusDvm system at 26 GPa after quenching, including: (a) full melt L at 2500°C, (b) phase association of the FPer + simplex FBdm + Dvm at partial melting (L) at 2000°C, (c) phase association of the FBdm + MWus + Sti + Dvm simplex with intermediates of the peritectic reaction of bridgmenite at 1650°C, (d) liquidus stishovite in the melt L at 2500°C. By tha data of (Spivak and Litvin, 2019)

Fig. A3.
figure 11

SEM images of experimental samples obtained during crystallization of diamonds and associated mineral phases in melts supersaturated with dissolved carbon in a polythermal cross section (MgO)30(FeO)20Carb\(_{{50}}^{*}\) – (SiO2)30(FeO)20Carb\(_{{50}}^{*}\). By the data of (Spivak and Litvin, 2019).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litvin, Y.A., Spivak, A.V. & Kuzyura, A.V. Variability of Stishovite Genesis under Terrestrial Conditions: Physicogeochemical Aspects. Geochem. Int. 62, 124–139 (2024). https://doi.org/10.1134/S0016702924020071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702924020071

Keywords:

Navigation