Skip to main content
Log in

Conditions of Formation of the Pentlandite (Fe,Ni1 – x)9S8 and Heazlewoodite Ni3S2 in the Pallasite Seymchan and Dronino Iron Meteorite

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Fe–Ni sulfides and metal–sulfide segregations in shock melt veins (pallasite Seymchan) and in a nodule (iron meteorite Dronino) were studied by scanning electron microscopy (SEM). It was found that sulfide assemblages contain not only troilite (FeS) but also Fe–Ni sulfides, namely pentlandite (FexNi1–x)9S8, and heazlewoodite Ni3S2, which form rims around primary troilite. The metal–sulfide segregations, in contrast to sulfide ones, consist of troilite, pentlandite and metallic nickel and have an unusual reticulate texture. The reticulate texture consists of isolated troilite grains surrounded by fibrous intergrowths of troilite, pentlandite, and metallic nickel. The Fe–Ni sulfides and metal–sulfide assemblages correspond to the solid–phase equilibrium in the Fe–Ni–S system in the low-temperature region (T < 875°C). Meanwhile, the shock melt veins in Seymchan demonstrate a liquid immiscibility of phosphate and metal–sulfide melts, which indicates the local shock melting of the vein material at temperatures T > 1500°C. In accordance with the FeNi–FeS phase diagram, the solidification of metal–sulfide melts begins at a temperature of 988°C via the formation of FeNi + FeS eutectic intergrowths. The disagreement of the observed phase composition and microtexture of metal–sulfide intergrowths in Seymchan and Dronino with those of eutectic FeNi + FeS intergrowths indicates the modification of the former metal–sulfide eutectic microtexture with the appearance of a low-temperature association FeS + pentlandite (FexNi1 – x)9S8 + Ni. On the basis of the data obtained, it was proposed that troilite + pentlandite + heazlewoodite and troilite + pentlandite + Ni(metal) assemblages in Seymchan and Dronino meteorites were formed due to long-term low-temperature interaction between coexisting FeNi metal and troilite, which proceeds with participation of groundwater on the Earth surface. Electrochemical reactions between meteorite material and partially dissociated aqueous solutions circulating along fractures are suggested to explain the formation of secondary sulfide phases, pentlandite (FexNi1 – x)9S8 and heazlewoodite Ni3S2, in pallasites and iron meteorites. The model of the supergene origin of the troilite + pentlandite + heazlewoodite and troilite + pentlandite + Ni (metal) associations is consistent with the intense corrosion of the Seymchan and Dronino meteorites, which is expressed by the extensive development of Fe-oxide/Fe-hydroxide rims and especially by the appearance of secondary hydrated minerals of supergene origin in Dronino.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. English abbreviation of back-scattered electron (BSE) images.

REFERENCES

  1. A. W. Bevan, P. J. Downes, and M. Thompson, “Little Minnie Greek, an L4(S2) ordinary chondritic meteorite from Western Australia,” J. Roy. Soc. Western Australia 84, 149–152 (2001).

    Google Scholar 

  2. J. S. Boesenberg, J. S. Delaney, and R. H. Hewins, “A petrological and chemical re-examination of main group pallasite formation,” Geochim. Cosmochim. Acta 89, 134–158 (2012).

    Article  Google Scholar 

  3. A. J. Brearly, “The action of water,” In: Meteorites and the Early Solar System II, Ed. by D. S. Lauretta and H. Y. McSween (Univ. of Arizona Press, Tucson, 2006), pp. 584–624.

    Google Scholar 

  4. S. N. Britvin, S. V. Krivovichev, and T. Armbruster, “Ferromerrillite, Ca9NaFe2+(PO4)7, a new mineral from the Martian meteorites, and some insights into merrillite–tuite transformation in shergottites,” Eur. J. Mineral. 28, 125–136 (2016).

    Article  Google Scholar 

  5. E. V. Brusnitsyna, R. F. Muftakheltdinova, G. A. Yakovlev, and V. I. Grokhovsky, “The octahedrite and pallasite parts metallographic comparison of the Seymchan meteorite,” 82nd Annual Meeting of Meteoritic Society 2019, LPI Contrib., No 2157, #6481 (2019).

  6. V. F. Buchwald, “The mineralogy of iron meteorites,” Philos. Trans. R. Soc. A. 286 (1336), 453–491 (1977).

    Google Scholar 

  7. E. S. Bullock, M. Grady, M. Gounelle, and S. S. Russell, “Fe–Ni sulphides as indicators of alteration in CM chondrites, 38th LPSC (Houston, Texas, 2007), 2057.pdf

  8. L. Chudinovskikh and R. Boehler, “Eutectic melting in the system Fe–S to 44 GPa,” Earth Planet Sci Lett. 257, 97–103 (2007).

    Article  Google Scholar 

  9. N. V. Chukanov, I. V. Pekov, L. A. Levitskaya, and A. E. Zadov, “Droninoite Mg3Fe3+Cl(OH)8·2H2O—a new mineral of the hydrotalcite group from the weathered Dronino meteorite,” Zap. Ross. Mineral. O-va 137 (6), 38–46 (2008).

    Google Scholar 

  10. Z. N. Fedorova and E. F. Sinyakova, “Experimental study of physicochemical conditions of pentlandite formation,” Geol. Geofiz. 34, 24–92 (1993).

    Google Scholar 

  11. N. A. Fowler-Gerace, Textural and Geochemical Investigation of Springwater Pallasite Olivine, Thesis of Master of Applied Science (Univ. of Toronto, 2014).

  12. N. A. Fowler-Gerace, K. T. Tait, D. E. Moser, I. Barker, and B. Y. Tian, “Aligned olivine in the Springwater pallasite,” Meteorit. Planet. Sci. 51, 1125–1135 (2016).

    Article  Google Scholar 

  13. J. Fritz, A. Greshake, and V. F. Fernandes, “Revising the shock classification of meteorites,” Meteorit. Planet. Sci. 52, 1216–1232 (2017).

    Article  Google Scholar 

  14. V. I. Grokhovsky, V. F. Ustyugov, D. D. Badyukov, and M. A. Nazarov, “Dronino: An ancient iron meteorite shower in Russia.,” In: 36th LPSC, abstract #1692 (2005).

  15. V. I. Grokhovsky, M. I. Oshtrakh, O. B. Milder, and V. A. Semionkin, “Mӧssbauer spectroscopy of iron meteorite Dronino and products of its corrosion,” Hyperfine Interactions 166, 671–677 (2006).

    Article  Google Scholar 

  16. C. Hamann, L. Hecht, M. Ebert, and R. Wirth, “Chemical projectile-target interaction and liquid immiscibility in impact glass from the Wabar craters, Saudi Arabia,” Geochim. Cosmochim. Acta 121, 291–310 (2013).

    Article  Google Scholar 

  17. C. Hamann, A. Fazio, M. Ebert, L. Hecht, R. Wirth, L. Folco, A. Deutsch, and W. U. Reinold, “Silicate liquid immiscibility in impact melts,” Meteorit. Planet. Sci. 53, 1594–1632 (2018).

    Article  Google Scholar 

  18. D. Harries and F. Langenhorst, “The nanoscale mineralogy of Fe,Ni sulfides in pristine and metamorphosed CM and CM/CI-like chondrites: Tapping a petrogenetic record,” Meteorit. Planet. Sci. 48, 879–903 (2013).

    Article  Google Scholar 

  19. D. Harries and M. E. Zolensky, “Mineralogy of iron sulfides in CM1 and CI1 lithologies of the Kaidun breccia: Records of extreme to intense hydrothermal alteration,” Meteorit. Planet. Sci. 51, 1096–1109 (2016).

    Article  Google Scholar 

  20. N. R. Khisina, D. D. Badyukov, and R. Wirth, “Microstructure, nanomineralogy and local chemistry of cryptocrystalline cosmic spherules. Geochem. Int. 54(1), 68–77 (2016).

    Article  Google Scholar 

  21. N. R. Khisina, R. Wirth, and A. A. Abdrakhimov, “Liquid immiscibility in regions of localized shock-induced melting in the Elga meteorite,” Geochem. Int. 57, 903–911 (2019).

    Article  Google Scholar 

  22. N. R. Khisina, D. D. Badyukov, V. G. Senin, and A. A. Burmistrov, “Evidence for local shock melting in Seymchan meteorite,” Geochem. Int. 58 (9), 994–1003 (2020).

    Article  Google Scholar 

  23. S. E. Kichanov, D. P. Kozlenko, E. V. Lukin, A. V. Rutkauska, E. A. Krasavin, A. Y. Rozanov, et al., “A neutron tomography study of the Seymchan pallasite,” Meteorit. Planet. Sci. 53 (10), 2155–2164 (2018).

    Article  Google Scholar 

  24. A. Kitakaze, T. Machida, and R. Komatsu, “Phase relations in the Fe–Ni–S system from 875 to 650°C,” Can. Mineral. 54, 1175–1186 (2016).

    Article  Google Scholar 

  25. V. I. Kosyakov, E. F. Sinyakova, and V. A. Shestakov, “Dependence of sulfur fugacity on the composition of phase associations in the Fe–FeS–NiS–Ni system at 873 K,” Geochem. Int. 41 (7), 660–669 (2003).

    Google Scholar 

  26. M. D. LeClerc, Cosmochemistry of Iron Meteorites; Trace Element Composition of Metal and Sulfide Phases, PhD Thesis, (Earth Science and Engineering, Imperial College London, 2015). K. Litasov, “Detailed mineralogy and trace element chemistry of Dronino iron meteorite: a pentlandite and heazlewoodite issue,” 52nd Lunar and Planetary Sci. Conf., LPI Contrib. No.1445, 2548.pdf (2021).

  27. D. Mittlefehldt, T. McCoy, C. Goodrich, and A. Kracher, “Non-Chondritic Meteorites from Asteroidal Bodies, Planetary Materials. Ed by J. J. Papike, Rev. Mineral. Geochem. 36 (1), 4-01–4-198 (1998).

  28. M. I. Oshtrakh, V. I. Grokhovsky, E. V. Petrova, M. Yu. Larionov, M. V. Goryunov, and V. A. Semionkin, “Mössbauer spectroscopy with a high velocity resolution applied for the study of meteoritic iron-bearing minerals,” J. Mol. Struct., No. 1044, 268–278 (2013).

  29. M. L. Oshtrakh, G. A. Yakovlev, V. I. Grokhovsky, and V. A. Semionkin, “Re-examination of Dronino iron meteorite and its weathering products using Mossbauer spectroscopy with a high velocity resolution,” Hyperfine Interactions 237, 42 (2016).

    Article  Google Scholar 

  30. I. V. Pekov, N. Perchiazzi, S. Merlino, V. N. Kalachev, M. Mellini, and A. E. Zadov, “Chukanovite, Fe2(CO3)(OH)3Cl a new mineral from the weathering iron meteorite Dronino,” Eur. J. Mineral. 19, 891–898 (2007).

    Article  Google Scholar 

  31. E. V. Petrova, A. A. Maksimova, A. V. Chukin, and M. I. Oshtrakh, “Variations in olivine extracted from two different fragments of Seymchan main group pallasite, 81st Annual Meeting of the Meteoritical Society 2018, LPI Contrib. No. 2067, 6094.pdf (2019).

  32. G. S. Ripp, V. V. Sharygin, I. A. Izbrodin, A. L. Ragozin, and E. A. Khromova, “Mineralogy and geochemistry of iron meteorite Yakut (IIAB), Buryatiya,” 200 th Annual Conference of the Russian Mineralogical Society, St. Petersburg, Russia, 2017 (St. Petersburg, 207), Vol. 2, pp. 311–313.

  33. A. E. Rubin, “Mineralogy of meteorite groups,” Meteorit. Planet. Sci. 32, 231–247 (1997).

    Article  Google Scholar 

  34. B. Ryzhenko and G. C. Kennedy, “The effect of pressure on the eutectic in the system Fe–FeS,” Am. J. Sci. 273, 803–810 (1973).

    Article  Google Scholar 

  35. D. L. Schrader and T. J. Zega, “Petrographic and compositional indicators of formation and alteration conditions from LL chondrite sulfides,” Geochim. Cosmochim. Acta 264, 165–179 (2019).

    Article  Google Scholar 

  36. D. L. Schrader, J. Davidson, and T. J. McCoy, “Widespread evidence for high temperature formation of pentlandite in chondrites,” Geochim. Cosmochim. Acta 189, 359–376 (2016).

    Article  Google Scholar 

  37. V. P. Semenenko and C. Perron, “Shock–melted material in the Krymka LL3.1 chondrite: Behavior of the opaque minerals,” Meteorit. Planet. Sci. 40, 173 (2005).

    Article  Google Scholar 

  38. R. Sharma and Y. Chang, “Thermodynamics and phase relationships of transition metal-sulfur systems: Part III. Thermodynamic properties of the Fe–S liquid phase and the calculation of the Fe–S phase diagram,” Metall. Mater. Trans. Section B. 10, 103–108 (1979).

    Article  Google Scholar 

  39. T. G. Sharp and P. S. DeCarli, “Shock effects in meteorites,” In Meteorites and the Early Solar System II, Ed. by D. S. Lauretta and H. Y. McSween (Univ. Arizona Press, 2006), pp. 653–677.

  40. V. V. Sharygin, “Mineralogy of silicate–natrophosphate immiscible inclusion in Elga IIE iron meteorite,” Minerals 10, 437–466 (2020).

    Article  Google Scholar 

  41. A. J. Stewart, M. W. Schmidt, W. van Westrenen, and C. Liebske, “Mars: a new core crystallization regime,” Science 316, 1323–1325 (2007).

    Article  Google Scholar 

  42. D. Stoffler, A. Bischoff, V. Buchwald, and A. E. Rubin, “Shock effects in meteorites,” In Meteorites and the Early Solar System, Ed. by J. F. Kerridge and M. S. Matthews (Univ. of Arizona, Tuscon, 1988), pp. 165–202.

  43. A. Sugaki and A. K. Kitakaze, “High form of pentlandite and its thermal stability,” Am. Mineral. 83, 133–140 (1998).

    Article  Google Scholar 

  44. A. V. Svetlov, D. V. Makarov, S. S. Potapov, D. A. Nekipelov, S. G. Seleznev, and V. A. Masloboev, “Study of leaching of disseminated copper–nickel ores during their interaction with mine waters,” Vestn. MGTU, no. 1–2, 165176 (2017).

  45. S. N. Teplyakova, C. A. Lorenz, M. A. Ivanova, N. N. Kononkova, M. O. Anosova, K. M. Ryazantsev, and Yu. A. Kostitsin, “Mineralogy of silicate inclusions in the Elga IIE iron meteorite,” Geochem. Int. 56 (1), 1–23 (2018).

    Article  Google Scholar 

  46. A. G. Tomkins, R. F. Weinberg, B. F. Schaefer, and A. Langendam, “Disequilibrium melting and melt migration driven byimpacts: implications for rapid planetesimal core formation,” Geochim. Cosmochim. Acta 100, 4–59 (2013).

    Article  Google Scholar 

  47. D. Van Niekerk, R. C. Greenwood, I. A. Franchi, E. R. D. Scott, and K. Keil, “Seymchan: a main group pallasite–not an iron meteorite,” Meteorit. Planet Sci. 42, A154 (2007).

    Google Scholar 

  48. N. Van Roosbroek, C. Hamann, S. McKibbin, A. Greshake, R. Wirth, L. Pittarello, L. Hecht, P. Claeys, and V. Debaille, “Immiscible silicate liquids and phosphoran olivine in Netschaevo IIE silicate: analogue for planetesimal core-mantle boundaries,” Geochim. Cosmochim. Acta 197, 378–395 (2017).

    Article  Google Scholar 

  49. X. Xie and M. Chen, “Yanzhuang meteorite: mineralogy and shock metamorphism, (Springer, Southern Publishing and Media Guangdong Science & Technology Press, 2020).

  50. X. Xie, M. Chen, S. Zhai, and F. Wang, “Eutectic metal + troilite + Fe–Mn–Na phosphate + Al-free chromite assemblage in shock-produced chondritic melt of the Yanzhuang chondrite,” Meteorit. Planet. Sci. 49 (12), 2290–2304 (2014).

    Article  Google Scholar 

  51. J. Yang, J. I. Goldstein, and E. R. D. Scott, “Main-group pallasites: Thermal history, relationship to IIIAB irons, and origin,” Geochim. Cosmochim. Acta 74, 4471–4492 (2010).

    Article  Google Scholar 

  52. M. E. Zolensky and L. Le, “Iron–nickel sulfide compositional ranges in CM chondrites: No simple plan,” 34th LPSC, abstract #1235 (2003).

Download references

ACKNOWLEDGMENTS

We are grateful to E.M. Spiridonov for valuable comments during manuscript preparation. V.G. Senin is thanked for help in microprobe measurements. Reviewers S.N. Teplyakova and V.I. Grokhovsky are thanked for useful comments.

Funding

This work was performed in the framework of the state task of the Ministry of Higher Education and Science.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. R. Khisina or D. D. Badyukov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khisina, N.R., Badyukov, D.D. Conditions of Formation of the Pentlandite (Fe,Ni1 – x)9S8 and Heazlewoodite Ni3S2 in the Pallasite Seymchan and Dronino Iron Meteorite. Geochem. Int. 60, 1207–1220 (2022). https://doi.org/10.1134/S0016702922120023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702922120023

Keywords:

Navigation