Skip to main content
Log in

Experimental Study of Reactions Forming Phlogopite and Potassic Titanates as Mineral Indicators of Metasomatism in the Upper Mantle

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

The paper summarizes authors' earlier and newly obtained experimental data on the formation of phlogopite and chromium-bearing potassium titanates of the crichtonite, magnetoplumbite, and hollandite groups, which are indicator minerals that characterize various stages of modal metasomatism in the upper mantle. Phlogopite-forming reactions were studied in the garnet–orthopyroxene system in the presence of H2O–KCl fluid at 3 and 5 GPa and 900–1000°C as simulating phlogopite formation in garnet peridotites and pyroxenites. Experiments have demonstrated regular variations in Ca and Cr contents in the garnet and Al in the pyroxenes, as well as the composition of the newly formed phlogopite, depending on the concentration of the potassium component (KCl or K2CO3) of the fluid. Experiments on the formation of potassium titanates (yimengite, mathiasite, and priderite) in the chromite–rutile/ilmenite–K2CO3–H2O–CO2 system at 3.5 and 5 GPa and 1200°C have proved that these minerals can be formed when chromite reacts with potassic aqueous–carbonic fluid, but these reactions require additional sources of titanium. These sources may be rutile and/or ilmenite, which are usually also produced by modal metasomatism of peridotites. The experiments thus confirm that the formation of titanates marks the most advanced stages of metasomatism in mantle peridotites. The experiments have shown that the formation of potassium titanates follows the formation of phlogopite, whereas assemblages of the titanates with phlogopite are produced at higher concentrations of the potassium component of the fluid than phlogopite alone. The relationships between the titanates are also a function of the activity of the potassium component in the fluid and, probably, pressure. The relationships and trends reproduced in the experiments clearly illustrate features of mineral assemblages and variations in compositions of minerals from metasomatized peridotites in the lithospheric mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. V. Almeida, V. Janasi, D. Svisero, and F. Nannini, “Mathiasite–loveringite and priderite in mantle xenoliths from the Alto Paranaíba Igneous Province, Brazil: genesis and constraints on mantle metasomatism,” Open Geosci. 6 (4), 614–632 (2014).

    Article  Google Scholar 

  2. D. K. Bailey, “Mantle metasomatism—continued chemical change within the Earth,” Nature. 296, 525–580 (1982).

    Article  Google Scholar 

  3. D. K. Bailey, “Mantle metasomatism—perspective and prospect,” In: Alkaline Igneous Rocks, Ed. By J. G. Fitton and B. G. J. Upton, Geol. Soc. Spec. Publ. London, 30, 1–13 (1987).

    Google Scholar 

  4. G. P. Bulanova, E. Muchemwa, D. G. Pearson, B. J. Griffin, S. P. Kelley, S. Klemme, and C. B. Smith, “Syngenetic inclusion of yimengite in diamond from Sese kimberlite (Zimbabwe)—evidence for metasomatic conditions of growth,” Lithos 77, 181–192 (2004).

    Article  Google Scholar 

  5. V. G. Butvina, S. S. Vorobey, O. G. Safonov, D. A. Varlamov, G. V. Bondarenko and Yu. B. Shapovalov, “Experimental study of the formation of chromium-bearing priderite and yimengite as products of modal mantle metasomatism,” Dokl. Earth Sci. 486 (6), 711–715 (2019).

    Article  Google Scholar 

  6. V. G. Butvina, S. S. Vorobey, O. G. Safonov, and G. V. Bondarenko, “Formation of K–Cr titanates from reactions of chromite and ilmenite/rutile with potassic aqueous–carbonic fluid: experiment at 5 GPa and applications to the mantle metasomatism,” Springer Nature. 9, 201–222 (2020).

    Google Scholar 

  7. S. Creighton, T. Stachel, S. Matveev, H. Höfer, C. McCammon, and R. W. Luth, “Oxidation of the Kaapvaal lithospheric mantle driven by metasomatism,” Contrib. Mineral. Petrol. 157 (4), 491–504 (2009).

    Article  Google Scholar 

  8. Z. Dong, J. Zhou, Q. Lu, and Z. Peng, “Yimengite, K(Cr,Ti,Fe,Mg)12O19, a new mineral from China,” Kexue Tongbao, Bull. Sci. 15, 932–936 (1983).

    Google Scholar 

  9. A. D. Edgar and M. Arima, “Experimental studies on K‑metasomatism of a model pyrolite mantle and their bearing on the genesis of uitrapotassic magmas,” Proc. 27th Int. Geol. Congr. Petrol. (Igneous and Metamorphic Rocks). 9, 509–541 (1984).

  10. A. J. Erlank and R. S. Rickard, “Potassic richterite bearing peridotites from kimberlite and the evidence they provide for upper mantle metasomatism,” Second International Kimberlite Conference (Santa Fe, 1977).

  11. A. J. Erlank, F. G. Waters, C. J. Hawkesworth, S. E. Haggerty, H. L. Allsopp, R. S. Rickard, and M. A. Menzies, “Evidence for mantle metasomatism in peridotite nodules from the Kimberley pipes, South Africa,” Mantle Metasomatism (Academic Press, London, 1987), pp. 221–311.

    Google Scholar 

  12. S. Foley, H. Hofer, and G. Brey, “High–pressure synthesis of priderite and members of lindsleyite–mathiasite and hawthorneite–yimengite series,” Contrib. Mineral. Petrol. 117, 164–174 (1994).

    Article  Google Scholar 

  13. M. L. Frezzotti and S. Ferrando, “The role of halogens in the lithospheric mantle,” The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes, Ed. By D. E. Harlov and L. Y. Aranovich (Springer, Cham, 2018), pp. 805–845.

    Google Scholar 

  14. A. Giuliani, V. S. Kamenetsky, D. Phillips, M. A. Kendrick, B. A. Wyatt, and K. Goemann, “Nature of alkali–carbonate fluids in the sub–continental lithospheric mantle,” Geology 40 (11), 967–970 (2012).

    Article  Google Scholar 

  15. W. L. Griffin, S. R. Shee, C. G. Ryan, T. T. Win, and B. A. Wyatt, “Harzburgite to lherzolite and back again: metasomatic processes in ultramafic xenoliths from the Wesselton Kimberlite, Kimberley, South Africa,” Contrib. Mineral. Petrol. 134, 232–250 (1999).

    Article  Google Scholar 

  16. S. E. Haggerty, “The mineral chemistry of new titanates from the Jagersfontein kimberlite, South Africa: implications for metasomatism in the upper mantle,” Geochim. Cosmochim. Acta. 47 (11), 1833–1854 (1983).

    Article  Google Scholar 

  17. S. E. Haggerty, “Metasomatic mineral titanates in upper mantle xenoliths,” In Mantle Xenoliths, Ed. By P. H. Nixon (J. Wiley and Sons Ltd., Chichester, 1987), pp. 671–690.

    Google Scholar 

  18. S. E. Haggerty, “Oxide mineralogy of the upper mantle,” Oxide Minerals: Petrologic and Magnetic Significance, Ed. By D. H. Lindsley, Rev. Mineral. 25, 355–416 (1991).

    Google Scholar 

  19. S. E. Haggerty, J. R. Smyth, A. J. Erlank, R. S. Rickard, and R. V. Danchin, “Lindsleyite (Ba) and mathiasite (K): two new chromium–titanates in the crichtonite series from the upper mantle,” Am. Mineral. 68, 494–505 (1983).

    Google Scholar 

  20. B. Harte, “Mantle peridotites and processes–the kimberlite sample,” In: Continental Basalts and Mantle Xenoliths, Ed. by C. J. Hawkesworth and M. J. Norry, (Shiva, Cheshire, 1983), pp. 46–91.

    Google Scholar 

  21. D. A. Ionov, S. Y. O’Reilly, and I. V. Ashchepkov, “Feldspar–bearing lherzolite xenoliths in alkali basalts from Hamar–Daban, southern Baikal region, Russia,” Contrib. Mineral. Petrol. 122, 174–190 (1995).

    Article  Google Scholar 

  22. A. L. Jaques, “Major and trace element variations in oxide and titanate minerals in the West Kimberley lamproites, Western Australia,” Mineral. Petrol. 110, 159–197 (2016).

    Article  Google Scholar 

  23. A. L. Jaques, A. E. Hall, J. W. Sheraton, C. B. Smith, S. S. Sun, R. M. Drew, C. Foudoulis, and K. Ellingsen, “Composition of crystalline inclusions and C–isotopic composition of Argyle and Ellendale diamonds,” In: Kimberlites and Related Rocks 2: Their Crust/Mantle Setting, Diamonds, and Diamond Exploration, Ed. by A. L. Jaques, J. Ferguson, and D. H. Green (Blackwells, Melbourne, 1989), pp. 966–989.

    Google Scholar 

  24. A. P. Jones, J. V. Smith, and J. B. Dawson, “Mantle metasomatism in 14 veined peridotites from Bultfontein Mine, South Africa,” J. Geol. 435–453 (1982).

  25. G. B. Kiviets, D. Phillips, S. R. Shee, S. C. Vercoe, E. S. Barton, C. B. Smith, and L. F. Fourie, “40Ar/39Ar dating of yimengite from Turkey Well kimberlite, Australia: the oldest and the rarest,” Ext. Abstr. 7th International Kimberlite Conference, (1998), pp. 432–434.

  26. J. Konzett and Y. Fei, “Transport and storage of potassium in the Earth’s upper mantle and transition zone: an experimental study to 23 GPa in simplified and natural bulk compositions,” J. Petrol. 41, 583–603 (2000).

    Article  Google Scholar 

  27. J. Konzett, H. Yang, and D. J. Frost, “Phase relations and stability of magnetoplumbite– and crichtoniteseries phases under upper–mantle P–T conditions: an experimental study to 15GPa with implications for LILE metasomatism in the lithospheric mantle,” J. Petrol. 46 (4), 749–781 (2005).

    Article  Google Scholar 

  28. J. Konzett, R. Wirth, Ch. Hauzenberger, and M. Whitehouse, “Two episodes of fluid migration in the Kaapvaal Craton lithospheric mantle associated with Cretaceous kimberlite activity: Evidence from a harzburgite containing a unique assemblage of metasomatic zirconium–phases,” Lithos 182–183, 165–184 (2013).

    Article  Google Scholar 

  29. J. Konzett, K. Krenn, D. Rubatto, C. Hauzenberger, and R. Stalder, “The formation of saline mantle fluids by open-system crystallization of hydrous silicate-rich vein assemblages-evidence from fluid inclusions and their host phases in MARID xenoliths from the central Kaapvaal Craton, South Africa,” Geochim. Cosmochim. Acta. 147, 1–25 (2014).

    Article  Google Scholar 

  30. I. Kushiro and K. Aoki, “Origin of some eclogite inclusions in kimberlite,” Am. Mineral. 53, 1347–1367 (1968).

    Google Scholar 

  31. E. V. Limanov, V. G. Butvina, O. G. Safonov, K. V. Van, and L. Ya. Aranovich, “Phlogopite formation in the orthopyroxene–garnet system in the presence of H2O–KCl fluid in application to the processes of mantle metasomatism,” Dokl. Earth Sci. 494 (1), 713–717 (2020).

    Article  Google Scholar 

  32. Yu. A. Litvin, Physical and Chemical Studies of Melting of Materials from Deep Earth (Nauka, Moscow, 1991) [in Russian].

  33. F. E. Lloyd A. D. Edgar, D. M. Forsyth, and R. L. Barnett, “The paragenesis of upper–mantle xenoliths from the Quaternary volcanics south–east of Gees, West Eifel, Germany,” Mineral. Mag. 55, 95–112 (1991).

    Article  Google Scholar 

  34. M. A. Menzies and C. J. Hawkesworth, Mantle Metasomatism (Academic Press: London, 1987). p. 472.

    Google Scholar 

  35. K. Naemura, I. Shimizu, M. Svojtka, and T. Hirajima, “Accessory priderite and burbanrite in multiphase solid inclusions in the orogenic garnet peridotite from the Bohemian Massif, Czech Republic,” Mineral. Petrol. 110, 20–28 (2015).

    Article  Google Scholar 

  36. P. H. Nixon and E. Condliffe, “Yimengite of K–Ti metasomatic origin in kimberlitic rocks from Venezuela,” Mineral. Mag. 53, 305–309 (1989).

    Article  Google Scholar 

  37. K. Norrish, “Priderite, a new mineral from the leucite lamproites of the West Kimberley area, Western Australia,” Mineral. Mag. 73, 1007–1024 (1951).

    Google Scholar 

  38. S. Y. O’Reilly and W. L. Griffin, “Mantle metasomatism,” Metasomatism and the Chemical Transformation of Rock (Springer: Berlin–Heidelberg, 2013), pp. 471–533.

    Google Scholar 

  39. C. Podpora and D. H. Lindsley, “Lindsleyite and mathiasite: synthesis of chromium–titanates in the crichtonite (A1M21O38) series,” EOS Trans., Am. Geophys. Union. 65, 293(1984).

    Google Scholar 

  40. R. T. Prider, “Some minerals from the leucite–rich rocks of the west Kimberley area, Western Australia,” Mineral. Mag. 25, 373–387 (1939).

    Google Scholar 

  41. D. I. Rezvukhin, V. G. Malkovets, I. S. Sharygin, I. G. Tretiakova, W. L. Griffin, and S. Y. O’Reilly, “Inclusions of crichtonite–group minerals in Cr–pyropes from the Internatsionalnaya kimberlite pipe, Siberian Craton: crystal chemistry, parageneses and relationships to mantle metasomatism,” Lithos 308, 181–195 (2018).

    Article  Google Scholar 

  42. D. I. Rezvukhin, T. A. Alifirova, A. V. Korsakov, and A. V. Golovin, “A new occurrence of yimengitehawthorneite and crichtonite–group minerals in an orthopyroxenite from kimberlite: Implications for mantle metasomatism,” Am. Mineral. 104 (5), 761–774 (2019).

    Article  Google Scholar 

  43. O. G. Safonov and V. G. Butvina, “Interaction of model peridotite with H2O–KCl fluid: experiment at 1.9 GPa and its implications for upper mantle metasomatism,” Petrology 21 (6), 599–615 (2013).

    Article  Google Scholar 

  44. O. G. Safonov and V. G. Butvina, “Indicator reactions of K and Na activities in the upper mantle: natural mineral assemblages, experimental data, and thermodynamic modeling,” Geochem. Int. 54 (10), 858–872 (2016).

    Article  Google Scholar 

  45. O. G. Safonov, V. G. Butvina, and E. V. Limanov, “Phlogopite–forming reactions as indicators of metasomatism in the lithospheric mantle,” Minerals. 9 (11), 685–703 (2019).

    Article  Google Scholar 

  46. O. G. Safonov, V. G. Butvina, E. V. Limanov and S. A. Kosova, “Mineral indicators of reactions involving fluid salt components in the deep lithosphere,” Petrology 27 (5), 489–515 (2019).

    Article  Google Scholar 

  47. D. J. Schulze, “Low-Ca garnet harzburgites from Kimberley, South Africa: Abundance and bearing on the structure and evolution of the lithosphere,” J. Geophys. Res.: Solid Earth. 100 (B7), 12513–12526 (1995).

    Article  Google Scholar 

  48. J. R. Smyth, A. J. Erlank, and R. S. Rickard, “A new Ba–Sr–Cr–Fe titanate mineral from a kimberlite nodule,” EOS. Am. Geophys. Union, 59, 394 (1978).

    Google Scholar 

  49. N. V. Sobolev and E. S. Yefimova, “Composition and petrogenesis of Ti–oxides associated with diamonds,” Int. Geol. Rev. 42 (8), 758–767 (2000).

    Article  Google Scholar 

  50. N. V. Sobolev, F. V. Kaminsky, W. L. Griffin, E. S. Yefimova, T. T. Win, C. G. Ryan, and A. I. Botkunov, “Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia,” Lithos 39, 135–157 (1997).

    Article  Google Scholar 

  51. A. G. Sokol, A. N. Kruk, D. A. Chebotarev, Yu. N. Pal’yanov, and N. V. Sobolev, “Conditions of phlogopite formation upon interaction of carbonate melts with peridotite of the subcratonic lithosphere,” Dokl. Earth Sci. 462 (6), 696–700 (2015).

    Article  Google Scholar 

  52. Y. Thibault and A. D. Edgar, “Patent mantle–metasomatism: inferences based on experimental studies,” Proc. Ind. Acad. Sci. Earth Planet. Sci. 99, 21–37 (1990).

    Google Scholar 

  53. E. van Achterbergh, W. L. Griffin, and J. Stiefenhofer, “Metasomatism in mantle xenoliths from the Letlhakane kimberlites: estimation of element fluxes,” Contrib. Mineral. Petrol. 141, 397–414 (2001).

    Article  Google Scholar 

  54. F. G. Waters and A. J. Erlank, “Assessment of the vertical extent and distribution of mantle metasomatism below Kimberley,” South Africa. J. Petrol., Special Lithosphere Issue (1988) 185–204.

    Book  Google Scholar 

  55. R. F. Wendlandt and D. H. Eggler, “Stability of sanidine + forsterite and its bearing on the genesis of potassic magmas and the distribution of potassium in the upper mantle,” Earth Planet. Sci. Lett. 51, 215–220 (1980).

    Article  Google Scholar 

  56. R. Y. Zhang, S. M. Zhai, Y. W. Fei, and J. G. Liou, “Titanium solubility in coexisting garnet and clinopyroxene at very high pressure: the significance of exsolved rutile in garnet,” Earth Planet. Sci. Lett. 216, 591–601 (2003).

    Article  Google Scholar 

Download references

Funding

This study was carried out under government-financed research projects AAAA-A18-118020590140-7 and AAAA-A18-118020590148-3 for the Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. G. Butvina or O. G. Safonov.

Additional information

Translated by E. Kurdyukov

Mineral symbols: Ap—apatite, Cal—calcite, Chr—chromite, Cpx—clinopyroxene, Di—diopside, Dol—dolomite, En—enstatite, Fo—forsterite, Grs—grossular, Grt—garnet, HAWYIM—minerals of the hawthorneite–yimengite series, Ilm—ilmenite, Knr—knorringite, KRich—potassic richterite, Ky—kyanite, LIMA—minerals of the lindsleyite–mathiasite series, Ma—mathiasite, Ol—olivine, Opx—orthopyroxene, Phl—phlogopite, Pri—priderite, Prp—pyrope, Rt—rutile, Spl—spinel, Srp—serpentine, Uv—uvarovite, Yim—yimengite, Zrn—zircon.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butvina, V.G., Safonov, O.G., Vorobey, S.S. et al. Experimental Study of Reactions Forming Phlogopite and Potassic Titanates as Mineral Indicators of Metasomatism in the Upper Mantle. Geochem. Int. 59, 757–777 (2021). https://doi.org/10.1134/S0016702921080024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702921080024

Keywords:

Navigation