Skip to main content
Log in

Estimation of Formation Temperature of the Noble Metal Mineralization of the Kovdor Alkaline-Ultrabasic Massif (Kola Peninsula)

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

In this work, mineralogical and geochemical data are presented for sulfide-rich phoscorites and carbonatites in the Kovdor massif. The PGE and Ag-bearing mineralization of bornite–chalcopyrite and Ag‑bearing mineralization of pyrrhotite–chalcopyrite associations were investigated. In carbonatite stage formation of massif, the noble metal minerals occurred during evolution of alkaline–ultrabasic melt and after separation of primary sulfide melt enriched in PGE, Au and Ag. According to the observed relationships, the minerals of PGE, Au, and Ag in bornite–chalcopyrite association are crystallized sequentially from magmatic to hydrothermal stages. Crystallization of Os, Ir, Pt and Pd minerals (erlichmanite, rustenburgite, isoferroplatinum, mertieite–II, etc.) occurred at temperature close to 480°С, while further decrease in the temperature and an increase in the Cu and Fe activity in the melt leads to the crystallization of Sb, Pb, As, Bi and Te-bearing minerals (sperrylite, tatyanaite, moncheite, stumpflite, etc.). Formation of Au and Ag-bearing minerals (electrum, silver, stromeyerite, lenaite, etc.) occurred at temperatures below 300 °C with relatively low sulfur activity. In carbonatites and phoscorites of the middle and late magmatic stages enriched with magnetite, pyrrhotite–chalcopyrite association with silver-bearing minerals was formed at temperatures below 300°C. Ag-bearing minerals were produced during hydrothermal recrystallization of Cu–Fe–Ni sulfides at temperature close to 150°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. B. V. Afanasiev, Mineral Resources of Alkaline–Ultrabasic Massifs of the Kola Peninsula (Roza Vetrov, St. Petersburg, 2011) [in Russian].

    Google Scholar 

  2. R. T. H. Aldous, “Copper-rich fluid inclusions in pyroxenes from the guide copper mine, a satellite intrusion of the Palabora igneous complex, South Africa,” Econ. Geol. 81, 143–155 (1986).

    Article  Google Scholar 

  3. R. T. H. Aldous, Ore Genesis in Copper–Bearing Carbonatites: a Geochemical, Mineralogical and Fuid Inclusion Study. PhD Thesis (Imperial College, London, 1980).

  4. N. L. Balabonin, A. V. Voloshin, and Ya. A. Pakhomovsky, Scarce sulfides in the rocks of the Kovdor massif, Mineral Complexes and Minerals of the Kola Peninsula (KFAN, SSSR, Apatite, 1980) [in Russian].

  5. N. I. Bezmen, V. I. Tikhomirova, and V. P. Kosogova, “Pyrite–pyrrhotite geothermometer: distribution of nickel and cobalt,” Geokhimiya, No. 5, 700–715 (1975).

    Google Scholar 

  6. N. I. Bezmen, N. I. Eremin, I. G. Narazauli, N. V. Pozdnyakova, and N. E. Sergeeva, “Pyrite–chalcopyrite geothermometer: cobalt distribution,” Geokhimiya, No. 3, 384–389 (1978).

    Google Scholar 

  7. V. A. Bryukvin and L. I. Blokhina, “Phase equilibria in the system iron–cobalt–sulfur,” In Pyrometall. Fundam. Process Dev. Proc. Nickel–Cobalt 97, Ed. by C. A. Levac and R. A. Berryman (Inst. Min. Metall. Petroleum. Montreal, Quebec, 1997), pp. 337–341.

    Google Scholar 

  8. A. G. Bulakh, N. S. Rudashevsky, P. I. and Karchevsky, “Gold, silver, sulfides, and rare-earth minerals in carbonatites of the Lulekop deposit (South Africa),” Zap. Ross. Mineral. O-va 127 (3), 45–54 (1998).

    Google Scholar 

  9. J. R. Craig, D. J. Vaughan, and J. B. Higgins, “Phase relations in the Cu–Co–S system and mineral associations of the carrollite (CuCoS4)–linnaeite (Co3S4) series,” Econ. Geol. 74, 657–671 (1979).

    Article  Google Scholar 

  10. J. B. Dawson, and R. W. Hinton, “Trace-element content and partitioning in calcite, dolomite and apatite in carbonatite, Phalaborwa, South Africa,” Mineral. Mag. 67, 921–930 (2003).

    Article  Google Scholar 

  11. V. V. Distler, S. F. Sluzhenikin, L. J. Cabri, N. A. Krivolutskaya, D. M. Turovtsev, T. A. Golovanova, A. V. Mokhov, V. V. Knauf, and O. I. Oleshkevich, “Platinum ores of the Noril’sk layered intrusions: magmatic and fluid concentration of noble metals,” Geol. Ore Deposits 41 (3), 214–237 (1999).

    Google Scholar 

  12. V. V. Distler, E. F. Sinyakova and V. I. Kosyakov, “Behavior of noble metals upon fractional crystallization of copper–rich sulfide melts,” Dokl. Earth Sci. 469 (2), 811–814 (2016).

    Article  Google Scholar 

  13. D. A. Dodin, N. M. Chernyshov, and V. A. Yatskevich, PGM Deposits of Russia (Nauka, St.Petersburg, 2000) [in Russian].

    Google Scholar 

  14. S. C. Eriksson, “Phalaborwa: a saga of magmatism. Metasomatism and miscibility,” Carbonatite: Genesis and Evolution, Ed. by K. Bell (Unwin Hyman, London, 1989), pp. 221–249.

    Google Scholar 

  15. S. P. Farrell and M. E. Fleet, “Phase separation in (Fe,Co)1 – xS monosulfide solid–solution below 450 c, with consequences for coexisting pyrrhotite and pentlandite in magmatic sulfide deposits,” Can. Miner. 40 (1), 33–46 (2002).

    Article  Google Scholar 

  16. M. E. Fleet, “Phase equilibria at high temperatures,” Rev. Mineral. Geochem. 61, 365–419 (2006).

    Article  Google Scholar 

  17. B. V. Gavrilenko, E. M Bakushin, E. G. Balaganskaya, A. A. Efimov. A. U. Korchagin, V. I. Skiba, A. K. Shpachenko, and T. L. Grokhovskaya, “Noble metals in rocks and ores of the intrusive complexes of the Kola region,” Zap. Ross. Mineral. O-va 131 (1), 9–19 (2002a).

    Google Scholar 

  18. B. V. Gavrilenko, A. K. Shpachenko, V. I. Skiba, E. G. Balaganskaya, and G. L. Vursii, “Noble-metal distribution in rocks, ores, and concentrates in the apatite-bearing intrusive complexes of the Karelian–Kola region,” Geology and Mineral resources of the Kola Peninsula. 2. Mineral Resources, Mineralogy, Petrology, Geophysics (KNTS RAN, Apatity, 2002b), pp. 48–63 [in Russian].

    Google Scholar 

  19. R. J. Giebel, C. D. K. Gauert, M. A. W. Marks, G. Costin, and G. Markl, “Multi-stage formation of REE minerals in the Palabora carbonatite complex, South Africa,” Am. Mineral. 102 (6), 1218–1233 (2017).

    Article  Google Scholar 

  20. R. J. Giebel, M. A. W. Marks, C. D. K. Gauert, and G. Markl, “A model for the formation of carbonatite–phoscorite assemblages based on the compositional variations of mica and apatite from the Palabora Carbonatite Complex, South Africa,” Lithos. 324–325, 89–104 (2019).

    Article  Google Scholar 

  21. V. V. Ivanikov, N. I. Krasnova, N. B. Filippov, E. V. Putintseva, and V. A. Bogachev, “Occurrence of the Palabora–type platinum-group mineralization in carbonatite massifs of the Kola Peninsula,” Dokl. Earth Sci. 351(5), 1395–1397 (1996).

    Google Scholar 

  22. G. Yu. Ivanyuk, V. N. Yakovenchuk, and Ya. A. Pakhomovsky, Kovdor (Mineraly Laplandii, Apatity, 2002) [in Russian].

    Google Scholar 

  23. G. Y. Ivanyuk, Y. A. Pakhomovsky, T. L. Panikorovskii, J. A. Mikhailova, A. O. Kalashnikov, A. V. Bazai, V. N. Yakovenchuk, N. G. Konopleva, and P. M. Goryainov, “Three-D mineralogical mapping of the Kovdor phoscorite–carbonatite complex, NW Russia: II. Sulfides,” Minerals 8 (7), 292 (2018).

    Article  Google Scholar 

  24. B. C. Jago and J. Gittins, “The role of fluorine in carbonatite magma evolution,” Nature 349, 56–58 (1991).

    Article  Google Scholar 

  25. H. Kaneda, S. Takenouchi, and T. Shoji, “Stability of pentlandite in the Fe–Ni–Co–S system,” Mineral. Deposita 21, 169–180 (1986).

    Article  Google Scholar 

  26. N. G. Konopleva, Ya. A. Pakhomovsky, A. V. Bazai, A. O.Kalashnikov. Yu. A. Korchak, V. N. Yakovenchuk, and G. Yu. Ivanyuk, “Dispersed noble-metal mineralization in the rocks of the Kovdor massif,” Proc. 7 th All-Russian Fersman Conference, Apatity, Russia, 2010 (OOO K & M, Apatity, 2010), pp. 56–59 [in Russian].

  27. V. I. Kosyakov, E. F. Sinyakova, and V. V. Distler, “Experimental simulation of phase relationships and zoning of magmatic nickel–copper sulfide ores, Russia,” Geol. Ore Deposits 54(3), 221–252 (2012).

    Article  Google Scholar 

  28. T. A. Kravchenko, “The Pt–Pd–Sn alloys in the Pt–Pd sulfide crystallization field in the Cu–Fe–S system,” New Data on Minerals 49, 90–94 (2014).

    Google Scholar 

  29. V. G. Lazarenkov, S. V. Petrov, and I. V. Talovina, PGM Deposits (Nedra, St. Petersburg, 2002) [in Russian].

    Google Scholar 

  30. W. H. Lee and P. J. Wyllie, “Processes of crustal carbonatite formation by liquid immiscibility and differentiation, elucidated by model systems,” J. Petrol. 39 (11–12), 2005–2013 (1998).

    Article  Google Scholar 

  31. J. Lusk and D. M. Bray, “Phase relations and the electrochemical determination of sulfur fugacity for selected reactions in the Cu–Fe–S and Fe–S systems at 1 bar and temperatures between 185 and 460 C,” Chem. Geol. 192, 227–248 (2002).

    Article  Google Scholar 

  32. R. H. Mitchell and B. A. Kjasgaard, “Differentiation and low-temperature crystallization of natrocarbonatite,” J. Petrol. 52 (7–8), 1265–1280 (2010).

    Article  Google Scholar 

  33. A. J. Naldrett, Magmatic Sulfide Deposits of the Copper–Nickel and PGM Ores (SPBGU, St Petersburg, 2003) [in Russian].

    Google Scholar 

  34. A. J. Naldrett, Magmatic Sulfide Deposits. Geology, Geochemistry and Exploration (Springer–Verlag, Berlin, 2004).

    Book  Google Scholar 

  35. S. V. Petrov, A. A. Martynova, and Y. S. Shelukhina, “Noble metal minerals in carbonatites of Kovdor massif,” Magmatism of the Earth and Related Strategic Metal Deposits (GEOKHI RAS, Moscow, 2018), pp. 237–239.

    Google Scholar 

  36. E. V. Putintseva, S. V. Petrov, and N. B. Filippov, “Noble metals in products of ore processing of the Kovdor deposit,” Obogashchenie rud, No. 5, 22–25 (1997).

  37. E. V. Putintseva, V. V. Distler, S. V. Petrov, E. A. Kraplya, S. F. Sluzhenikin, and N. B. Filippov, “New data on noble metal mineralization of alkaline complexes of the Karelian–Kola region,” Carbonatites of the Kola Peninsula (SPbGU, St. Petersburg, 1999), pp. 97–98 [in Russian].

  38. N. S. Rudashevsky, V.V. Knauf, N. I. Krasnova, and V. N. Rudashevsky, “PGM and gold–silver minerlization in ores and carbonatites of the alkaline–ultrabasic complex, Kovdor massif, Russia,” Zap. Ross. Mineral. O–va, No. 5, 1–15 (1995).

    Google Scholar 

  39. N. S. Rudashevsky, Yu. L. Kretser, V. N. Rudashevsky, and E. A. Sukharzhevskaya, “A review and comparison of PGE, noble metal and sulphide mineralization in phoscorites and carbonatites from Kovdor and Phalaborwa,” In Phoscorites and Carbonatites from Mantle to Mine. The Key Example of the Kola Alkaline Province, Ed. by F. Wall and A. N. Zaitsev (Mineralogical Society, London, 2004), pp. 375–406.

    Google Scholar 

  40. R. O. Sack and D. S. Ebel, “Thermochemistry of sulfide mineral solutions,” Rev. Miner. Geochem. 61, 265–364 (2006).

    Article  Google Scholar 

  41. V. V. Sharygin, L. M. Zhitova, and E. N. Nigmatulina, “Fairchildite K2Ca(CO3)2 in phoscorites from Phalaborwa, South Africa: the first occurrence in alkaline carbonatite complexes,” Russ. Geol. Geophys. 52 (2), 208–219 (2011).

    Article  Google Scholar 

  42. A. K. Shpachenko, “Sulfide minerals of alkaline–ultrabasic massifs with carbonatites of the Kola Peninsula,” Proc. 9 th Fersman Conference of GI KNTs RAN, Apatity, Russia, 2012 (K & M, 2012, Apatity), pp. 316–318 [in Russian].

  43. A. K. Shpachenko, Yu. N. Neradovsky, and E. E. Savchenko, “Argentopentlandite in the bedrocks of the Kovdor massif,” Proc. 7th All-Russian Fersman Conference, Apatity, Russia, 2010 (K & M., Apatity, 2010), pp 115–117 [in Russian].

  44. S. I. Sineva, V. I. Kosyakov, E. F. Sinyakova, and O. S. Novozhilova, “Crystallization of quasi-binary bnss–tss eutectics in the Cu–Fe–Ni–S system, Physicochemical Processes in Condensed Environments and on Interphase Boundaries (FAGRAN-2018) (Nauchnaya Kniga, Voronezh, 2018), pp. 469–470 [in Russian].

    Google Scholar 

  45. E. F. Sinyakova and V. I. Kosyakov, “The behavior of noble–metal admixtures during fractional crystallization of As- and Co-containing Cu–Fe–Ni sulfide melts,” Russ. Geol. Geophys. 53 (10), 1055–1076 (2012).

    Article  Google Scholar 

  46. E. F. Sinyakova, V. I. Kosyakov and A. S. Borisenko, “Effect of the presence of As, Bi, and Te on the behavior of Pt metals during fractionation crystallization of sulfide magma,” Dokl. Earth Sci. 477 (4), 1422–1425 (2017).

    Article  Google Scholar 

  47. S. V. Sokolov, “Formation temperatures and temperature facies of carbonatites from the alkaline ultramafic complexes,” Geochem. Int. 34 (1), 13–18 (1996).

    Google Scholar 

  48. S. V. Sokolov, “Physicochemical conditions of formation of mineralization in the carbonatite-series rocks,” Razved. Okhr, Nedr, no. 4, 29–32 (2005).

  49. S. V. Sokolov, “The formation conditions of labuntsovite group minerals in the Kovdor massif, Kola Peninsula,” Geol. Ore Deposits 56 (8), 671–674 (2014).

    Article  Google Scholar 

  50. I. P. Solovova, I. D. Ryabchikov, L. N. Kogarko, and N. N. Kononkova, “Inclusions in minerals of the Palaborwa carbonatite complex, South Africa,” Geochem. Int. 36(5), 377–388 (1998).

    Google Scholar 

  51. N. V. Sorokhtina, L. N. Kogarko, V. A. Zaitsev, N. N. Kononkova and A. M. Asavin, “Sulfide mineralization in the carbonatites and phoscorites of the Guli Massif, Polar Siberia, and their noble–metal potential,” Geochem. Int. 64 (11), 1125–1146 (2019).

    Article  Google Scholar 

  52. N. V. Sorokhtina, L. N. Kogarko, V. A. Zaitsev, N. N. Kononkova, and A. M. Asavin, “Sulfide mineralization in the carbonatites and phoscorites of the Guli massif, Polar Siberia, and their noble–metal potential,” Geochem. Int. 57 (11), 1125–1146 (2019).

    Article  Google Scholar 

  53. N. V. Sorokhtina, S. V. Petrov, A. A. Martynova, N. N. Kononkova, and A. V. Antonov, “Parent sources of noble metal mineralization of the Kovdor alkaline–ultramafic massif (Kola Peninsula),” Mineral Diversity Research and Preservation (Earth and Man National Museum, Sofia, 2019), pp. 47–48.

    Google Scholar 

  54. N. V. Sorokhtina, S. V. Petrov, A. A. Martynova, N. N. Kononkova, A. V. Antonov, and V. A. Zaitsev, “Genesis of noble metal mineralization of the Kovdor alkaline–ultramafic massif (Kola Peninsula),” Mineral Diversity Research and Preservation (Earth and Man National Museum, Sofia, 2020), pp. 116–124.

    Google Scholar 

  55. E. M. Spiridonov, “Ore-magmatic systems of the Noril’sk ore field,” Russ. Geol. Geophys. 51 (9), 1059–1077 (2010).

    Article  Google Scholar 

  56. G. F. Subbotina, V. V. Subbotin, and Ya. A. Pakhomovsky, “Some features of sulfide mineralization of the apatite–magnetite ores and carbonatites of the Kovdor deposit,” Composition of Alkaline Intrusive Complexes of the Kola Peninsula (KF AN SSSR, Apatity, 1981), pp. 88–95 [in Russian].

    Google Scholar 

  57. A. Sugaki, “Studies on the join Cu5FeS4–CuFeS2–x as geothermometer,” J. Japan Assoc. Min. Petr. Econ. Geol. 53, 1–17 (1965).

    Article  Google Scholar 

  58. M. Tarkian and B. Stribrny, “Platinum-group elements in porphyry copper deposits: a reconnaissance study,” Mineral. Petrol. 65, 161–183 (1999).

    Article  Google Scholar 

  59. The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-Group Elements, Ed. by L. J. Cabri (Marc Veilleux Imprimeur Inc, 2002).

    Google Scholar 

  60. V. Tomkute, A. Solheim, S. Sakirzanovas, B. Oye, and E. Olsent, “Phase equilibria evaluation for CO2 capture: CaO–CaF2–NaF, CaCO3–NaF–CaF2, and Na2CO3–CaF2–NaF,” J. Chem. Eng. Data. 59, 1257–1263 (2014).

    Article  Google Scholar 

  61. A. H. Treiman and E. J. Essene, “A periclase–dolomite–calcite carbonatite from the Oka complex, Quebec, and its calculated volatile composition,” Contrib Mineral Petrol. 85, 149–157 (1984).

    Article  Google Scholar 

  62. T. Tsujimura and A. Kitakaze, “New phase relations in the Cu–Fe–S system at 800°C; constraint of fractional crystallization of a sulfide liquid,” N. Jb. Miner. Mh. (10), 433–444 (2004).

  63. I. Veksler, T. Nielsen, and S. Sokolov, “Mineralogy of crystallized melt inclusions from Gardiner and Kovdor ultramafic alkaline complexes: implications for carbonatite genesis,” J. Petrol. 39, 2015–2031 (1998).

    Article  Google Scholar 

  64. W. J. Verwoerd, “Mineral deposits associated with carbonatites and alkaline rocks,” Mineral Deposits of Southern Africa, Ed. by C. R. Anhaeusser and S. Maske, Geol. Soc. S. Afr. 2, 2173–2191 (1986).

  65. F.-Y. Wu, Y.-H. Yang, Q.-L. Li, R. H. Mitchell, J. B. Dawson, G. Brandl, and M. Yuhara, “In situ determination of U-Pb ages and Sr–Nd–Hf isotopic constraints on the petrogenesis of the Phalaborwa carbonatite complex, South Africa,” Lithos 127, 309–322 (2011).

    Article  Google Scholar 

  66. P. J. Wyllie, “Phase equilibria in system CaO–CO2–H2O and related systems, with implications for crystal growth of calcite and apatite,” J. Am. Ceram. Soc. 50 (1), 43–46 (1967).

    Article  Google Scholar 

  67. O. S. Yakovleva, I. V. Pekov, I. A. Bryzgalov, and Yu. P. Menshikov, “Chalcogenide mineralization in the alumina-rich fenites of the Khibiny alkaline complex (Kola Peninsula, Russia),” New Data on Minerals 45, 33–49 (2010).

    Google Scholar 

  68. R. A. Yund and G. Kullerud, “Thermal stability of assemblages in the Cu–Fe–S system,” J. Petrol. 7(3), 454–488 (1966).

    Article  Google Scholar 

  69. J. H. Zhan, Y. Xie, X. G. Yang, W. X. Zhang, and Y. T. Qian, “Hydrazine-assisted low-temperature hydrothermal preparation of nanocrystalline jaipurite,” J. Solid State Chem. 146, 36–38 (19

Download references

ACKNOWLEDGMENTS

This work was financially supported by the Russian Foundation for Basic Research (project no. 18–05–00590).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. V. Sorokhtina, V. A. Zaitsev, S. V. Petrov or N. N. Kononkova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorokhtina, N.V., Zaitsev, V.A., Petrov, S.V. et al. Estimation of Formation Temperature of the Noble Metal Mineralization of the Kovdor Alkaline-Ultrabasic Massif (Kola Peninsula). Geochem. Int. 59, 474–490 (2021). https://doi.org/10.1134/S0016702921050086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702921050086

Keywords:

Navigation