Skip to main content
Log in

Geochemical Features, Sources, and Geodynamic Settings of Accumulation of the Cambrian Sedimentary Rocks of the Mel’gin Trough (Bureya Continental Massif)

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—The paper reports first geochemical data on the Cambrian sedimentary rocks of the Mel’gin trough of the Bureya continental massif, as well as geochronological data on detrital zircons from these rocks. It is established, that sandstones of the Chergilen and Allin formations of the Mel’gin trough are dominated by detrital zircons with Late Riphean (peaks on relative probability plots at 0.78, 0.82, 0.94, and 1.04 Ga) and Early Riphean (peaks on relative probability plots at 1.38, 1.45, 1.64 Ga) ages. Single grains have Middle Riphean, Early Proterozoic and Late Archean ages. We can suppose that the sources of Late Riphean detrital zircons in sandstones of the Chergilen and Allin formations are rocks of gabbro‒granitoids (940‒933 Ma) and granite‒leucogranite (804‒789 Ma) associations identified in the Bureya continental massif. It is impossible to determine which rocks were sources for Middle Riphean and older detrital zircons in the Cambrian sedimentary rocks of the Bureya continental massif, because the pre-Late Riphean complexes have not been identified yet in its structure. The most probable geodynamic setting for the accumulation of the Cambrian deposits of the Mel’gin trough is an active continental margin, which is consistent with manifestation of the Early Cambrian granitoids magmatism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. S. F. Amelin, State Geological Map of the Russian Federation. Scale : 200 000. Far East Series. Sheet M-52-XII. Third Generation (AO Dal’geofizika, 2016) [in Russian].

  2. M. R. Bhatia, “Plate tectonics and geochemical composition of sandstones,” J. Geol. 91 (6), 611–627 (1983).

    Article  Google Scholar 

  3. M. R. Bhatia and K. A. W. Crook, “Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins,” Contrib. Mineral. Petrol. 92, 181–193 (1986).

    Article  Google Scholar 

  4. L. P. Black, S. L. Kamo, C. M. Allen, D. W. Davis, J. N. Aleinikoff, J. W. Valley, R. Mundil, I. H. Campbell, R. J. Korsch, I. S. Williams, and C. Foudoulis, “Improved 206Pb/238U microprobe geochronology by the monitoring of trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards,” Chem. Geol. 205, 15–140 (2004).

    Article  Google Scholar 

  5. R. L. Cullers, “Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA,” Chem. Geol. 191, 305–327 (2002).

    Article  Google Scholar 

  6. G. Gehrels, “Detrital zircon U-Pb geochronology: current methods and new opportunities,” Tectonics of Sedimentary Basins: Recent Advances (Wiley-Blackwell, 2011), pp. 47–62.

    Google Scholar 

  7. G. E. Gehrels, V. Valencia, and J. Ruiz, “Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry,” Geochem. Geophys. Geosyst. 9 (3), 1–13 (2008).

    Article  Google Scholar 

  8. S. J. Goldstein and S. B. Jacobsen, “Nd and Sr isotopic systematics of rivers water suspended material: implications for crustal evolution,” Earth Planet. Sci. Lett. 87, 249–265 (1988).

    Article  Google Scholar 

  9. X. X. Gu, “Geochemical characteristics of the Triassic Tethys turbidites in northwestern Sichuan, China: implications for provenance and interpretation of the tectonic setting,” Geochim. Cosmochim. Acta. 58, 4615–4631 (1994).

    Article  Google Scholar 

  10. L. Harnois, “The CIW index: a new Chemical Index of Weathering. Sediment,” Geol. 55, 319–322 (1988).

  11. M. M. Herron, “Geochemical classification of terrigenous sands and shales from core or log data,” J. Sediment. Petrol. 58, 820–829 (1988).

    Google Scholar 

  12. S. B. Jacobsen and G. J. Wasserburg, “Sm-Nd evolution of chondrites and achondrites,” Earth Planet. Sci. Lett. 67, 137–150 (1984).

    Article  Google Scholar 

  13. A. I. Khanchuk, Geodynamics, Magmatism and Metallogeny of East Russia (Dal’nauka, Moscow, 2006) [in Russian].

    Google Scholar 

  14. A. I. Khanchuk, G. M. Vovna, V. I. Kiselev, M. A. Mishkin, and S. N. Lavrik, “First results of zircon LA-ICP-MS U–Pb dating of the rocks from the granulite complex of Khanka Massif in the Primorye Region,” Dokl. Earth Sci. 434(1), 1164–1167 (2010).

    Article  Google Scholar 

  15. A. B. Kotov, S. D. Velikoslavinskii, A. A. Sorokin, L. N. Kotova, A. P. Sorokin, A. M. Larin, V. P. Kovach, N. Yu. Zagornaya, and A. V. Kurguzova, “The age of the Amur Group of the Bureya–Jiamusi Superterrane in the Central-Asian Fold Belt: Sm-Nd isotope evidence,” Dokl. Earth Sci. 429 (1), 1245–1248 (2009a).

    Article  Google Scholar 

  16. A. B. Kotov, A. A. Sorokin, E. B. Sal’nikova, A. P. Sorokin, S. D. Velikoslavinskii,  I. V. Anisimova, and S. Z. Yakovleva, “Early Paleozoic age of gabbroids of the Amur Complex (Bureya–Jiamusi Superterrane of the Central Asian Fold Belt),” Dokl. Earth Sci. 425 (1), 185–188 (2009b).

    Article  Google Scholar 

  17. A. B. Kotov, A. A. Sorokin, E. B. Sal’nikova, A. P. Sorokin, A. M. Larin, S. D. Velikoslavinskii, T. V. Belyakov, I. V. Anisimova, and S. Z. Yakovleva, “Mesozoic age of granitoids from the Beket Complex (Gonzha Block within the Argun Terrane of the Central-Asian Fold Belt),” Dokl. Earth Sci. 429 (2), 1457–1461 (2009c).

    Article  Google Scholar 

  18. A. B. Kotov, A. M. Mazukabzov, T. M. Skovitina, S. D. Velikoslavinsky, A. A. Sorokin, and A. P. Sorokin, “Structural evolution and geodynamic position of the Gonzha Block, Upper Amur Region,” Geotectonics 47 (5), 351–361 (2013).

    Article  Google Scholar 

  19. L. I. Krasnyi and Pen Yunbyao, Geological Map of the Amur Region and Adjacent Territories. Scale 1 : 2 500 000 (VSEGEI, St. Petersburg, 1999) [in Russian].

  20. A. Kröner, The Central Asian Orogenic Belt. Geology, Evolution, Tectonics, and Models (Borntraeger Sci. Publishers, Stuttgart, 2015).

    Google Scholar 

  21. A. Kröner, V. Kovach, D. Alexeiev, K. L. Wang, J. Wong, K. Degtyarev, and I. Kozakov. “No excessive crustal growth in the Central Asian Orogenic Belt: Further evidence from field relationships and isotopic data,” Gondwana Res. 50, 135–166 (2017).

    Article  Google Scholar 

  22. J. Y. Li, “Permian geodynamic setting of northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific plate,” J. Asian Earth Sci. 26, 207–224 (2006).

    Article  Google Scholar 

  23. K. Ludwig, “Isoplot 3.6,” Berkeley Geochronol. Center Spec. Publ. 4, 1–77 (2008).

    Google Scholar 

  24. M. V. Martynyuk, S. A. Ryamov, and V. A. Kondrat’eva, Explanatory Note to the Correlation Scheme of the Magmatic Complexes of the Khabarovsk Krai and Amur District (Dal’geologiya, Khabarovsk, 1990) [in Russian].

    Google Scholar 

  25. J. M. Mattinson, “Analysis of the relative decay constants of 235U and 238U by multi-step CA-TIMS measurements of closed system natural zircon samples,” Chem. Geol. 275, 186–198 (2010).

    Article  Google Scholar 

  26. A. A. Mossakovsky, S. V. Ruzhentsev, S. G. Samygin, and T. N. Kheraskova, “Central Asian Fold Belt: geodynamic evolution and history of formation,” Geotektonika 6, 3–32 (1993).

    Google Scholar 

  27. B. N. Nath, B H. Kunzendorf, and W. L. Pluger, “Influence of provenance, weathering and sedimentary processes on the elemental ratios of the fine-grained fraction of the bedload sediments from the Vembanad lake and the adjoining continental shelf, southwest coast of India,” J. Sed. Res. 70 (5), 1081–1094 (2000).

    Article  Google Scholar 

  28. H. W. Nesbitt and G. M. Young, “Early Proterozoic climates and plate motions inferred from major element chemistry of lutites,” Nature 299, 715–717 (1982).

    Article  Google Scholar 

  29. R. O. Ovchinnikov, A. A. Sorokinn, and N. M. Kudryashov, “Age of the Early Precambrian (?) intrusive complexes of the Northern Bureya continental massif, Central Asian Fold Belt,” Russ. J. Pac. Geol. 12 (4), 289–302 (2018).

    Article  Google Scholar 

  30. J. B. Paces and J. D. Miller, “Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenic, paleomagnetic, and tectonomagmatic processes associated with the 1.1. Ga Midcontinent Rift System,” J. Geophys. Res. 98 (B8), 13997–14013 (1993).

    Article  Google Scholar 

  31. L. M. Parfenov, N. A. Berzin, A. I. Khanchuk, G. Bodarch, V. G. Belichenko, A. N. Bulgatov, S. R. Dril’, G. L. Kirillova, M. I. Kuzmin, U. J. Nokleberg, A. V. Prokop’ev, V. F. Prokop’ev, V. F. Timofeev, O. Tomurtogoo, and H. Yan, “Model of the formation of orogenic belts of the Central and Northeastern Asia,” Tikhookean. Geol. 22 (6), 7–41 (2003).

    Google Scholar 

  32. F. J. Petijohn, P. E. Potter, and R. Siver, Sands and Sandstones (Harper and Row, New York, 1973).

    Book  Google Scholar 

  33. N. N. Petruk and Yu. R. Volkova, State Geological Map of the Russian Federation. Scale 1 : 1 000 000. Far East Series. Sheet M-52. Third Generation (VSEGEI, St. Petersburg, 2006). [in Russian].

  34. P. R. Renne, C. C. Swisher, A. L. Deino, D. B. Karner, T. L. Owens, and D. J. DePaolo, “Intercalibration of standarts, absolute ages and uncertainties in 40Ar/39Ar dating,” Chem. Geol. 145, 117–152 (1998).

    Article  Google Scholar 

  35. Resolution of 4 th Interdisciplinary Regional Conference on the Precambrian and Phanerozoic of the Southern Far East and East Transbaikalia. A Set of Schemes (KhGGGP, Khabarovsk, 1994) [in Russian].

  36. E. B. Sal’nikova, A. B. Kotov, V. P. Kovach, S. D. Velikoslavinskii, B.-M. Jahn, A. A. Sorokin, A. P. Sorokin, K.-L. Wang, S.-L. Chung, H.-Y. Lee, and E. V. Tolmacheva, “Age of the Gonzha Group (Argun Terrane, Central Asian Fold Belt) inferred from U–Pb and Lu–Hf zircon data,” Dokl. Earth Sci. 444 (2), 692–695 (2012).

    Article  Google Scholar 

  37. E. B. Sal’nikova, A. B. Kotov, V. P. Kovach, S. D. Velikoslavinskii, B.-M. Jahn,  A. A. Sorokin, A. P. Sorokin, K.-L. Wang, S.-L. Chan, H.-Ya. Li, and E. V. Tolmacheva, “Mesozoic Age of the Uril Formation of the Amur Group, Lesser Khingan Terrane of the Central Asian Foldbelt: results of U–Pb and Lu–Hf isotopic studies of detrital zircons,” Dokl. Earth Sci. 453 (2), 1181–1184 (2013).

    Article  Google Scholar 

  38. A. M. C. Sengor and B. A. Natal’in, “Paleotectonics of Asia: fragments of a synthesis,” The Tectonic Evolution of Asia (Cambridge University Press, 1996), pp. 486–640.

    Google Scholar 

  39. A. N. Serezhnikov and Yu. R. Volkova, State Geological Map of the Russian Federation. Scale 1 : 1 000 000. Third Generation. Far East Series. Sheet N-52 (Zeya) (VSEGEI, St. Petersburg, 2007).

  40. E. V. Sklyarov, Interpretation of Geochemical Data (Intermet Inzhiniring, Moscow, 2001) [in Russian].

    Google Scholar 

  41. A. A. Sorokin and N. M. Kudryashov, “The first geochronological evidence for Late Paleozoic granitoid magmatism in the Bureya Terrane (east of the Central Asian Fold Belt),” Dokl. Earth Sci. 447 (2), 1292–1296 (2012).

    Article  Google Scholar 

  42. A. A. Sorokin and N. M. Kudryashov, “Early Mesozoic magmatism of the Bureinskii Terrane of the Central Asian Foldbelt: age and geodynamic setting,” Dokl. Earth Sci. 452 (1), 915–921 (2013).

    Article  Google Scholar 

  43. A. A. Sorokin, A. B. Kotov, E. B. Salnikova, N. M. Kudryashov, I. V. Anisimova, S. Z. Yakovleva, and A. M. Fedoseenko, “Granitoids of the Tyrma–Bureya Complex in the northern Bureya–Jiamusi superterrane of the Central Asian fold belt: age and geodynamic setting,” Russ. Geol. Geophys. 51 (5), 563–571 (2010).

    Article  Google Scholar 

  44. A. A. Sorokin, A. B. Kotov, E. B. Salnikova, A. P. Sorokin, S. Z. Yakovleva,  Yu. V. Plotkina, and B. M. Gorokhovskii, “The Early Paleozoic age of granitoids of the Kiviliyskii Complex of the Bureya Terrane (eastern flank of the Central Asian Fold Belt), Dokl. Earth Sci. 440 (1), 1253–1257 (2011a).

    Article  Google Scholar 

  45. A. A. Sorokin, Yu. V. Smirnov, Yu. N. Smirnova, and N. M. Kudryashov, “First data on age of metarhyolites from the Turan Group of the Bureya Terrane,  eastern part of the Central Asian Foldbelt,” Dokl. Earth Sci. 439 (1), 944–948 (2011b).

    Article  Google Scholar 

  46. A. A. Sorokin, Yu. V. Smirnov, A. B. Kotov, and V. P. Kovach, “Age and source of terrigenous rocks of the Turan Group of the Bureya Terrane of the Eastern Part of the Central Asian Foldbelt: results of geochemical (Sm–Nd) and geochronological (U–Pb LA–ICP–MS) studies,” Dokl. Earth Sci. 456 (2), 759–763 (2014).

    Article  Google Scholar 

  47. A. A. Sorokin, A. B. Kotov, N. M. Kudryashov, and V. P. Kovach, “Early Mesozoic granitoid and rhyolite magmatism of the Bureya Terrane of the Central Asian Orogenic Belt: age and geodynamic setting,” Lithos 261, 181–194 (2016).

    Article  Google Scholar 

  48. A. A. Sorokin, R. O. Ovchinnikov, N. M. Kudryashov and A. P. Sorokin, “An early Neoproterozoic gabbro–granite association in the Bureya Continental Massif (Central Asian Fold Belt): first geochemical and geochronological data,” Dokl. Earth Sci. 471 (2), 1307–1311 (2016).

    Article  Google Scholar 

  49. A. A. Sorokin, R. O. Ovchinnikov, and N. M. Kudryashov, “Two stages of Neoproterozoic magmatism in the evolution of the Bureya continental massif of the Central Asian Fold Belt,” Russ. Geol. Geophys. 58 (10), C. 1171–1187 (2017).

  50. J. S. Stacey and I. D. Kramers, “Approximation of terrestrial lead isotope evolution by a two-stage model,” Earth Planet. Sci. Lett. 26 (2), 207–221 (1975).

    Article  Google Scholar 

  51. T. Tanaka, S. Togashi, H. Kamioka, H. Amakawa, H. Kagami, T. Hamamoto, M. Yuhara, Y. Orihashi, S. Yoneda, H. Shimizu, T. Kunimaru, K. Takahashi, T. Yanagi, T. Nakano, H. Fujimaki, R. Shinjo, Y. Asahara, M. Tanimizu, and C. Dragusanu, “JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium,” Chem. Geol. 168, 279–281 (2000).

    Article  Google Scholar 

  52. J. Tang, W. L. Xu, F. Wang, W. Wang, M. J. Xu, and Y. H. Zhang, “Geochronology and geochemistry of Neoproterozoic magmatism in the Erguna Massif, NE China: petrogenesis and implications for the breakup of the Rodinia supercontinent,” Precambrian Res. 224, 597–611 (2013).

    Article  Google Scholar 

  53. S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell Scientific Publ., Oxford, 1985)

    Google Scholar 

  54. J. N. J. Visser and G. M. Young, “Major element geochemistry and paleoclimatology of the Permo-Carboniferous glaciogene Dwyka Formation and post-glacial mudrocks in Southern Africa,” Palaegeogr. Palaeoclim. Palaeoecol. 81, 49–57 (1990).

    Article  Google Scholar 

  55. M. J. Whitehouse, B. S. Kamber, and S. Moorbath, “Age significance of U-Th-Pb zircon data from Early Archaean rocks of west Greenland- a reassessment based on combined ion-microprobe and imaging studies,” Chem. Geol. 160, 201–224 (1999).

    Article  Google Scholar 

  56. S. A. Wilde, “Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction – A review of the evidence,” Tectonophysics 662, 345–362 (2015).

    Article  Google Scholar 

  57. F. Y. Wu, D. Y. Sun, W. C. Ge, Y. B. Zhang, M. L. Grant, S. A. Wilde, and B. M. Jahn, “Geochronology of the Phanerozoic granitoids in northeastern China,” J. Asian Earth Sci. 41, 1–30 (2011).

    Article  Google Scholar 

  58. V. Yu. Zabrodin, V. A. Gur’yanov, and S. G. Kislyakov, State Geological Map of the Russian Federation. Scale 1 : 1 000 000. Far East Series. Sheet N-53. Third Generation (VSEGEI, St. Petersburg, 2007) [in Russian].

  59. X. Zhao, R. S. Coe, Y. Zhou, H. Wu, G. Kuang, Z. Dong, and J. Wang, “Tertiary paleomagnetism of North and South China: a reappraisal of Late Mesozoic paleomagnetic data from Eurasia: Implications for the Cenozoic tectonic history of Asia,” Tectonophysics 235, 181–203 (1994).

    Article  Google Scholar 

  60. X. Zhao, R. S. Coe, S. A. Gilder, and G. M. Frost, “Paleomagnetic constrains on the paleogeography of China: Implication for Gondwanaland,” Aust. J. Earth Sci. 43, 643–672 (1996).

    Article  Google Scholar 

  61. X. Zhao, W. Xiao, R. Hébert, and C. Wang, “Plate tectonics of Asia: geological and geophysical constraints,” Gondwana Res. 22(2), 353–359 (2012).

    Article  Google Scholar 

  62. J. B. Zhou and S. A. Wilde, “The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt,” Gondwana Res. 23, 1365–1377 (2013).

    Article  Google Scholar 

  63. J. B. Zhou, S. A. Wilde, G. C. Zhao, X. Z. Zhang, H. Wang, and W. S. Zheng, “Was the easternmost segment of Central Asian Orogenic Belt derived from Gondwana or Siberia: An intriguing dilemma?” J. Geodynam. 50, 300–317 (2010).

    Article  Google Scholar 

  64. J. B. Zhou, S. A. Wilde, X. Z. Zhang, S. M. Ren, and C. Q. Zheng, “Early Paleozoic metamorphic rocks of the Erguna block in the Great Xing’an Range, NE China: evidence for the timing of magmatic and metamorphic events and their tectonic implications,” Tectonophysics 499, 105–117 (2011a).

    Article  Google Scholar 

  65. J. B. Zhou, S. A. Wilde, X. Z. Zhang, G. C. Zhao, F. L. Liu, D. W. De-Wu Qiao, S. M. Ren, and J. H. Liu, “A > 1300 km late Pan-African metamorphic belt in NE China: New evidence from the Xing’an block and its tectonic implications,” Tectonophysics 509, 280–292 (2011b).

    Article  Google Scholar 

  66. L. P. Zonenshain, M. I. Kuzmin, and L. M. Natapov, Tectonics of Lithospheric Plates of the USSR Territories (Nedra, Moscow, 1990), Vol. 1 [in Russian].

    Google Scholar 

  67. V. F. Zubkov, and A. F. Vas’kin, Geological Map of the BAM Region. Scale 1 : 500 000. Sheet M-52-B (VSEGEI, Leningrad, 1984).

Download references

ACKNOWLEDGMENTS

We are grateful to geologists from the JC Dal’geofizika, S.A. Amelin, V.N. Arapov, and G.V. Roganov, for help in collecting materials, as well as analysts from the analytical laboratories of the Institute of Geology and Nature Management of the Far East Branch of the Russian Academy of Sciences (E.N. Voropaeva, O.G. Medvedeva, A.I. Palazhchenko, V.I. Rozhdestvina, E.S Sapozhnik, and E. V. Ushakova), Institute of Tectonics and Geophysics of the Far East Branch of the Russian Academy of Sciences (E.M. Golubeva, A.V. Shtareva, and L.S. Yakovenko,), as well as the LaserChron Center of the University of Arizona (USA) for the performance of analytical studies.

Mineralogical studies were carried out in the framework of the State Task of the Institute of Geology and Nature Management of the Far East Branch of the Russian Academy of Sciences (theme no. АААА-А16-116051810110-7). Geochemical, isotope-geochemical, and geochronologicla studies were supported by the Russian Foundation for Basic Research (project no. 17-55-53005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. O. Ovchinnikov, A. A. Sorokin or A. B. Kotov.

Additional information

Translated by M.M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovchinnikov, R.O., Sorokin, A.A., Kovach, V.P. et al. Geochemical Features, Sources, and Geodynamic Settings of Accumulation of the Cambrian Sedimentary Rocks of the Mel’gin Trough (Bureya Continental Massif). Geochem. Int. 57, 540–555 (2019). https://doi.org/10.1134/S0016702919050094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702919050094

Keywords

Navigation