Skip to main content
Log in

Geochemistry, petrogenesis and age of metamorphic rocks of the Angara complex at the junction of South and North Yenisei Ridge

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The mineralogical, petrological, geochemical and geochronological data were used to evaluate the age and petrogenesis of compositionally contrasting metamorphic rocks at the junction between Meso-Neoproterozoic Transangarian structures and Archean-Paleoproterozoic complexes of the Angara–Kan inlier of the Yenisei Ridge. The studied metabasites and metapelites provide clues for understanding the evolution of the region. The magmatic protoliths of low-Ti metabasites were derived by melting of depleted (N-MORB) upper mantle, and their high-Ti counterparts are interpreted to have originated from an enriched mantle source (E-MORB). The petrogeochemical characteristics of protoliths of the metabasite dikes resemble those of within-plate basalts and ocean island tholeiites. The Fe- and Al-rich metapelites are redeposited and metamorphosed products of Precambrian weathering crusts of kaolinite and montmorillonite-chlorite-hydromica compositions. The Р–Т conditions of metamorphism (4.9–5.5 kbar/570–650°С for metabasites; 4.1–7.1 kbar/500–630°С for metapelites) correspond to epidote–amphibolite to amphibolite facies transition. The evolution of the Angara complex occurred in two stages. The early stage (1.18–0.85 Ga) is associated with Grenville tectonics and the late stage is correlated with accretion/collision episodes of the Valhalla orogeny, with the peaks at 810–790 and 730–720 Ma, and the final stage of the Neoproterozoic evolution of the orogen on the southwestern margin of the Siberian craton. The correlation of regional crustal processes with globalscale geological events in the Precambrian evolution of the Earth supports recent paleomagnetic reconstructions that allow a direct, long-lived (1400–600 Ma) spatial and temporal connection between Siberia, Laurentia, and Baltica, which have been parts of ancient supercontinents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • J. J. Ague, “Evidence for major mass transfer and volume strain during regional metamorphism of pelites,” Geology 19, 855–858 (1991).

    Article  Google Scholar 

  • J. L. Anderson and D. R. Smith, “The effects of temperature and fO2 on the Al-in-hornblende barometer,” Am. Mineral. 80, 549–559 (1995).

    Article  Google Scholar 

  • Yu. A. Balashov, Geochemistry of Rare-Earth Elements (Nedra, Moscow, 1976) [in Russian].

    Google Scholar 

  • S. Bhadra and A. Bhattacharya, “The barometer tremolite + tschermakite + 2 albite = 2 pargasite + 8 quartz: constraints from experimental data at unit silica activity, with application to garnet-free natural assemblages,” Am. Mineral. 92, 491–502 (2007).

    Article  Google Scholar 

  • J. D. Blundy and T. J. B. Holland, “Calcic amphibole equilibria and new amphibole-plagioclase geothermometer,” Contrib. Mineral. Petrol. 104, 208–224 (1990).

    Article  Google Scholar 

  • S. V. Bogdanova, B. Bingen, R. Gorbatschev, T. N. Kheraskova, V. I. Kozlov, V. N. Puchkov, and Yu. A. Volozh, “The East European Craton (Baltica) before and during the assembly of Rodinia,” Precambrian Research 160, 23–45 (2008).

    Article  Google Scholar 

  • S. V. Bogdanova, S. A. Pisarevsky, and Z. X. Li. “Assembly and breakup of Rodinia (Some results of IGCP Project 440),” Stratigr. Geol. Correl. 17 (3), 259–274 (2009).

    Article  Google Scholar 

  • W. V. Boynton, “Cosmochemistry of the rare earth elements: meteorite studies,” in Rare earth element geochemistry, Ed. by P. Henderson (Elsevier, Amsterdam, 1984), pp. 63–114.

    Chapter  Google Scholar 

  • P. A. Cawood, R. Strachan, K. Cutts, P. D. Kinny, M. Hand, and S. Pisarevsky, “Neoproterozoic orogeny along the margin of Rodinia: Valhalla orogen, North Atlantic,” Geology 38 (2), 99–102 (2010).

    Article  Google Scholar 

  • A. I. Chernykh, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (OIGGM SO RAN, Novosibirsk, 2000) (in Russian).

    Google Scholar 

  • K. Condie, “High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes?” Lithos 79, 491–504 (2005).

    Article  Google Scholar 

  • M. Corsini, V. Bosse, G. Feraud, F. Demoux, and G. Crevola, “Exhumation processes during post-collisional stage in the Variscan belt revealed by detailed 40Ar/39Ar study (Tanneron Massif, SE France),” Int. J. Earth Sci. 99, 327–341 (2010).

    Article  Google Scholar 

  • R. Cox, D. R. Lowe, and R. L. Cullers, “The influence of sediment recycling and basement composition on evolution of mudrock chemistry in southwesterm United States,” Geochim. Cosmochim. Acta 59, 2919–2940 (1995).

    Article  Google Scholar 

  • I. W. D. Dalziel, “Neoproterozoic–Paleozoic geography and tectonics: review, hypothesis and environmental speculation,” Geol. Soci. Amer. Bull. 109, 16–42 (1997).

    Article  Google Scholar 

  • I. W. D. Dalziel, S. Mosher, and L. M. Gahagan, “Laurentia–Kalahari collision and the assembly of Rodinia,” J. Geol. 108, 499–513 (2000).

    Article  Google Scholar 

  • A. Didenko and V. Yu. Vodovozov, “The apparent polar wander path of the Siberian craton in the Paleoproterozoic,” in Rodinia 2013: Supercontinental Cycles and Geodynamics Symposium, Ed. by R. Veselovskiy and N. Lubnina (PERO Press, Moscow, 2013), pp. 20.

    Google Scholar 

  • G. N. Eby, “Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications,” Geology 20, 641–644 (1992).

    Article  Google Scholar 

  • A. S. Egorov, Deep Structure and Geodynamics of the North Eurasia Lithosphere: Results of Geological-Geophysical Modeling along (Geotransects of Russia) (VSEGEI, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  • R. E. Ernst, M. T. D. Wingate, K. L. Buchan, and Z. H. Li, “Global record of 1600–700 Ma Large Igneous Provinces (LIPs): implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents,” Precambrian Res. 160, 159–178 (2008).

    Article  Google Scholar 

  • D. A. D. Evans and R. N. Mitchell, “Assembly and breakup of the core of Paleoproterozoic–Mesoproterozoic supercontinent Nuna,” Geology 39 (5), 443–446 (2011).

    Article  Google Scholar 

  • C. M. Fedo, H. W. Nesbitt, and G. M. Young, “Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosoils, with implications for paleoweathering conditions and provenance,” Geology 23, 921–924 (1995).

    Article  Google Scholar 

  • J. M. Ferry and F. S. Spear, “Experimental calibration of the partitioning of Fe and Mg between biotite and garnet,” Contrib. Mineral.Petrol. 66, 113–117 (1978).

    Article  Google Scholar 

  • J. G. Fitton, A. D. Saunders, M. J. Norry, B. S. Hardarson, and R. N. Taylor, “Thermal and chemical structure of the Iceland plume,” Earth Planet. Sci. Lett. 153, 197–208 (1997).

    Article  Google Scholar 

  • E. D. Ghent and M. Z. Stout, “Geobarometry and geothermometry of plagioclase–biotite–garnet–muscovite assemblages,” Contrib. Mineral. Petrol. 76, 92–97 (1981).

    Article  Google Scholar 

  • J. M. Hammarstrom and E.-A. Zen, “Aluminum in hornblende: an empirical igneous geobarometers,” Am. Mineral. 71, 1297–1313 (1986).

    Google Scholar 

  • L. Harnois, “The CIW index: a new chemical index of weathering,” Sediment. Geol. 55, 319–322 (1988).

    Article  Google Scholar 

  • K. V. Hodges, “Geochronology and thermochronology in orogenic system,” in Treatise on Geochemistry, Ed. by H. D. Holland and K. K. Turekian (Elsevier, Oxford, 2004), pp. 263–292.

    Google Scholar 

  • M. J. Holdaway “Application of new experimental and garnet Margules data to the garnet-biotite geothermometer,” Am. Mineral. 85, 881–892 (2000).

    Article  Google Scholar 

  • L. S. Hollister, G. C. Grissom, E. K. Peters, H. H. Stowell, and V. B. Sisson, “Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons,” Am. Mineral. 72, 231–239 (1987).

    Google Scholar 

  • P. R. Hooper, “The Columbia river basalts,” Science 215, 1463–1468 (1982).

    Article  Google Scholar 

  • G. Hoschek, “The stability of staurolite and chloritoid and their significance in metamorphism of pelitic rocks,” Contrib. Mineral. Petrol. 22, 208–232 (1969).

    Article  Google Scholar 

  • T. N. Kheraskova, S. A. Kaplan, and V. I. Galuev, “Structure of the Siberian Platform and its western margin in the Riphean–Early Paleozoic,” Geotectonics 43(2), 115–132 (2009).

    Article  Google Scholar 

  • V. V. Khiller, S. L. Votyakov, and Yu. V. Erokhin, “X-Ray spectral microprobe analysis of the U–Th-bearing minerals geochronometers (methodical recommendations),” Vestn. Ural’sk. Odt. Ross. Mineral. O-va 8, 115–130 (2011).

    Google Scholar 

  • M. J. Kohn and F. S. Spear, “Error propagation for barometers,” Am.Mineral. 76, 138–147 (1991).

    Google Scholar 

  • P. S. Kozlov, I. I. Likhanov, V. V. Reverdatto, and S. V. Zinoviev, “Tectonometamorphic eolution of the Garevka polymetamorphic complex (Yenisei Ridge),” Russ. Geol. Geophys. 53 (11), 1133–1149 (2012).

    Article  Google Scholar 

  • P. S. Kozlov, I. I. Likhanov, S. V. Zinoviev, and V. V. Hiller, “Angara metamorphic complex, Yenisei Ridge: geology, PT conditions, and metamorphic age,” Litosfera 14 (6), 141–149 (2014).

    Google Scholar 

  • I. I. Likhanov, “Chloritoid, staurolite, and gedrite of aluminous hornfelses of the Karatash Massif (eastern slope of the Kuznetsk Alatau),” Zap. Vsesoyuz. Mineral O-va 116 (4), 466–475 (1987).

    Google Scholar 

  • I. I. Likhanov, “Chemical evolution of metapelite minerals during low-temperature contact metamorphism: evidence from the Karatash Massif in Kuznetsk Alatau,” Vsesoyuz. Mineral O-va 117(2), 153–162(1988).

    Google Scholar 

  • I. I. Likhanov, “Chloritoid, staurolite and gedrite of the high-alumina hornfelses of the Karatash pluton,” Int. Geol. Rev. 30 (8), 868–877 (1988a).

    Article  Google Scholar 

  • I. I. Likhanov, “Evolution of chemical composition of metapelite minerals during low-temperature contact metamorphism at the Karatash pluton,” Int. Geol. Rev. 30 (8), 878–887 (1988b).

    Article  Google Scholar 

  • I. I. Likhanov, “Mineral reactions in high-alumina ferriferous metapelitic hornfelses: the problem of stability of rare parageneses of contact metamorphism,” Geologiya i Geofizika 44 (4), 305–316 (2003).

    Google Scholar 

  • I. I. Likhanov and V. V. Reverdatto, “Provenance of Precambrian Fe- and Al-rich metapelites in the Yenisey Ridge and Kuznetsk Alatau, Siberia: geochemical signatures,” Acta Geol. Sinica–English Edition 81 (3), 409–423 (2007).

    Article  Google Scholar 

  • I. I. Likhanov and V. V. Reverdatto, “Precambrian Fe- and Al-rich pelites from the Yenisey Ridge, Siberia: geochemical signatures for protolith origin and evolution during metamorphism,” Int. Geol. Rev. 50 (7), 597–623 (2008).

    Article  Google Scholar 

  • I. I. Likhanov and V. V. Reverdatto, “Precambrian kyanite–sillimanite metamorphism in overthrust terranes of the Yenisey Ridge, Siberia,” Geochim. Cosmochim. Acta 73 (13S), A763 (2009).

    Google Scholar 

  • I. I. Likhanov and V. V. Reverdatto, Neoproterozoic collisional metamorphism in overthrust terranes of the Trans-Angarian Yenisey Ridge, Siberia, Int. Geol. Rev. 53(7), 802–845 (2011a).

    Article  Google Scholar 

  • I. I. Likhanov and V. V. Reverdatto, “Precambrian P–T–t history of the Yenisey Ridge as a consequence of contrasting tectonic settings in the western margin of the Siberian craton,” Mineral. Mag. 75 (3), 1327 (2011b).

    Google Scholar 

  • Likhanov, I. I. and Reverdatto, V. V. “Lower Proterozoic metapelites in the Northern Yenisei Range: nature and age of the protolith and the behavior of material during collisional metamorphism,” Geochem. Int. 49 (3), 224–252 (2011).

    Article  Google Scholar 

  • I. I. Likhanov and V. V. Reverdatto, “Compositional zoning of polyphase garnet in pelites as a consequence of three metamorphic events in Precambrian P–T–t history of the Yenisey Ridge, Siberia,” Mineral. Mag. 77 (5), 1609 (2013).

    Google Scholar 

  • Likhanov, I. I. and Reverdatto, V. V. “Geochemistry, age, and petrogenesis of rocks from the Garevka metamorphic complex, Yenisey Ridge,” Geochem. Int. 52 (1), 1–21 (2014a).

    Article  Google Scholar 

  • Likhanov, I. I. and Reverdatto, V. V. “P–T–t constraints on the metamorphic evolution of the Transangarian Yenisei Ridge: geodynamic and petrological implications,” Russ. Geol. Geophys. 55 (3), 299–322 (2014c).

    Article  Google Scholar 

  • Likhanov, I. I. and Reverdatto, V. V. “Zoning of garnets as an indicator of metamorphic evolution in metapelites of the Yenisei Ridge,” Dokl. Earth Sci. 458 (1), 1099–1103 (2014b).

    Article  Google Scholar 

  • I. I. Likhanov and V. V. Reverdatto, “The oldest metabasites of the north Yenisei Ridge,” Dokl. Earth Sci. 460 (2), 113–117 (2015a).

    Article  Google Scholar 

  • I. I. Likhanov and V. V. Reverdatto, “Evidence of Middle Neoproterozoic extensional tectonic settings along the western margin of the Siberian Craton: implications for the breakup of Rodinia,” Geochem Int. 53 (7), 671–679 (2015b).

    Article  Google Scholar 

  • I. I. Likhanov V. V. Reverdatto, and I. Memmi, “Shortrange mobilization of elements in the biotite zone of contact aureole of the Kharlovo gabbro massif (Russia),” Eur. J. Mineral. 6 (1), 133–144 (1994).

    Article  Google Scholar 

  • I. I. Likhanov, V. V. Reverdatto, V. S. Sheplev, A. E. Verschinin, and P. S. Kozlov, “Contact metamorphism of Fe- and Al-rich graphitic metapelites in the Transangarian region of the Yenisey Ridge, eastern Siberia, Russia,” Lithos 58, 55–80 (2001).

    Article  Google Scholar 

  • I. I. Likhanov, O. P. Polyansky, V. V. Reverdatto, and I. Memmi, “Evidence from Fe- and Al-rich metapelites for thrust loading in the Transangarian Region of the Yenisey Ridge, eastern Siberia,” J. Metamorph. Geol. 22 (8), 743–762 (2004).

    Article  Google Scholar 

  • I. I. Likhanov, P. S. Kozlov, N. V. Popov, V. V. Reverdatto, and A. E. Vershinin, “Collisional metamorphism as a result of thrusting in the Transangara Region of the Yenisei Ridge,” Dokl. Earth Sci. 411 (2), 1313–1317 (2006a).

    Article  Google Scholar 

  • I. I. Likhanov, V. V. Reverdatto, and A. E. Vershinin, “Geochemical evidence for protolith originof Fe- and Al-rich metapelites from the Kuznetsk Alatau and Yenisei Ridge,” Russ. Geol. Geophys. 47 (1), 120–133 (2006b).

    Google Scholar 

  • I. I. Likhanov, P. S. Kozlov, O. P. Polyansky, N. V. Popov, V. V. Reverdatto, A. V. Travin, and A. E. Vershinin, “Neoproterozoic age of collisional metamorphism in the Transangara Region of the Yenisei Ridge (based on 40Ar/39Ar data),” Dokl. Earth Sci. 413 (2), 234–237 (2007).

    Article  Google Scholar 

  • I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, and N. V. Popov, “Collision metamorphism of Precambrian complexes in the Transangarian Yenisei Range,” Petrology 16 (2), 136–160 (2008a).

    Article  Google Scholar 

  • I. I. Likhanov, V. V. Reverdatto, and A. E. Vershinin, “Fe- and Al-rich metapelites of the Teiskaya Group, Yenisei Range: geochemistry, protoliths, and the behavior of their material during metamorphism,” Geochem. Int. 46 (1), 17–36 (2008b).

    Article  Google Scholar 

  • I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, and N. V. Popov, “Kyanite—sillimanite metamorphism of the Precambrian complexes, Transangarian region of the Yenisei Ridge,” Russ. Geol. Geophys. 50 (12), 1034–1051 (2009).

    Article  Google Scholar 

  • I. I. Likhanov, V. V. Reverdatto, and A. V. Travin, “Exhumation rate of rocks from Neoproterozoic collisional metamorphic complexes of the Yenisei Ridge,” Dokl. Earth Sci. 435 (3), 1518–1523 (2010).

    Article  Google Scholar 

  • I. I. Likhanov, V. V. Reverdatto, and P. S. Kozlov, “Collision- related metamorphic complexes of the Yenisei Ridge: their evolution, ages, and exhumation rate,” Russ. Geol. Geophys. 52 (10), 1256–1269 (2011a).

    Article  Google Scholar 

  • I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, and A. E. Vershinin, “The Teya polymetamorphic complex in the Transangarian Yenisei Ridge: an example of metamorphic superimposed zoning of low- and mediumpressure facies series,” Dokl. Earth Sci. 436 (2), 213–218 (2011b).

    Article  Google Scholar 

  • I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, and S. V. Zinoviev, “New evidence for Grenville events on the western margin of the Siberian Craton: the example of the Garevka metamorphic complex in the Transangarian Yenisei Ridge,” Dokl. Earth Sci. 438 (4), 782–787 (2011c).

    Article  Google Scholar 

  • I. I. Likhanov, V. V. Reverdatto, and P. S. Kozlov, “U–Pb and 40Ar/39Ar evidence for Grenvillian activity in the Yenisey Ridge during formation of the Teya metamorphic complex,” Geochem. Int. 50(6), 551–557 (2012a).

    Article  Google Scholar 

  • I. I. Likhanov, V. V. Reverdatto, N. V. Popov, and P. S. Kozlov, “The first find of rapakivi granite in the Yenisei Ridge: age, pt conditions, and tectonic settings,” Dokl. Earth Sci. 443(2), 365–370(2012b).

    Article  Google Scholar 

  • I. I. Likhanov, N. V. Popov, and A. D. Nozhkin, “The oldest granitoids in the Transangarian part of the Yenisey Ridge: U–Pb and Sm–Nd data and geodynamic settings,” Geochem. Int. 50 (10), 869–877(2012c).

    Article  Google Scholar 

  • I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, V. V. Khiller, and V. P. Sukhorukov, “Three metamorphic events in the Precambrian P–T–t history of the Transangarian Yenisey Ridge recorded in garnet grains in metapelites”, Petrology 21 (6), 561–578 (2013).

    Article  Google Scholar 

  • I. I. Likhanov, V. V. Reverdatto, S. V. Zinoviev, and A. D. Nozhkin, “Age of blastomilonites of the Yenisei regional shear zone as evidence of the Vendian accretionary–collision events at the western margin of the Siberian Craton,” Dokl. Earth. Sci. 450 (1), 489–493 (2013a).

    Article  Google Scholar 

  • I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, and S. V. Zinov’ev, “The Neoproterozoic Trans-Angara Dike Belt, Yenisei Range, as an indicator of extension and breakup of Rodinia,” Dokl. Earth. Sci. 450 (2), 613–617 (2013b).

    Article  Google Scholar 

  • I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, and V. V. Khiller, “Neoproterozoic metamorphic evolution in the Transangarian Yenisei Ridge: evidence from monazite and xenotime geochronology,” Dokl. Earth. Sci. 450 (1), 556–561 (2013c).

    Article  Google Scholar 

  • I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, and V. V. Khiller, “The first data on Mesoproterozoic tectonic events in the geological history of the south Yenisei Ridge,” Dokl. Earth. Sci. 453 (1), 1274–1277 (2013d).

    Article  Google Scholar 

  • I. I. Likhanov, A. D. Nozhkin, V. V. Reverdatto, and P. S. Kozlov, “Grenville tectonic events and evolution of the Yenisei Ridge at the western margin of the Siberian Craton,” Geotectonics 48 (5), 371–389 (2014a).

    Article  Google Scholar 

  • I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, V. V. Khiller, and A. D. Nozhkin, “Late Proterozoic A-type granites of the Chernorechenskii Massif in the Yenisei Ridge: new geochemical and geochronological data,” Dokl. Earth. Sci. 455 (1), 279–283 (2014b).

    Article  Google Scholar 

  • I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, V. V. Khiller, and V. P. Sukhorukov, “P–T–t constraints on polymetamorphic complexes of the Yenisey Ridge, East Siberia: implications for Neoproterozoic paleocontinental reconstructions,” J. Asian Earth Sci. 113 (1), 391–410 (2015).

    Article  Google Scholar 

  • I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, S. V. Zinoviev, and V. V. Khiller, “P-T-t reconstructions of South Yenisei Ridge metamorphic history (Siberian Craton): petrological consequences and application to the supercontinental cycles,” Russ. Geol. Geophys. 56 (6), 805–824 (2015a).

    Article  Google Scholar 

  • I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, S. V. Zinoviev, and V. V. Khiller, “Evidence for the Valhalla tectonic events at the western margin of the Siberian Craton,” Dokl. Earth Sci. 462(1), 458–462 (2015b).

    Article  Google Scholar 

  • M. T. McCulloch and J. A. Gamble, “Geochemical and geodynamial constrints on subduction zone magmatism,” EarthPlanet. Sci. Lett. 102, 358–374 (1991).

    Article  Google Scholar 

  • S. M. McLennan, “Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes,” in Geochemistry and Mineralogy of Rare Earth Elements, Ed. by B. R. Lipin and G. A. McKay (Mineralogical Society of America, Washington, 1989), pp. 169–200.

    Google Scholar 

  • M. A. Meschide, “A method of discriminating between different types of mid ocean rigde basalts and continental tholeites with Nb–Zr–Y diagram,” Chem.Geol. 56, 207–218(1986).

    Article  Google Scholar 

  • D. V. Metelkin, V. A. Vernikovsky, and A. Yu. Kazansky, “Neoproterozoic evolution of Rodinia: constraints from new paleomagnetic data on the western margin of the Siberian Craton,” Russ. Geol. Geophys. 48 (1), 32–45 (2007).

    Article  Google Scholar 

  • G. L. Mitrofanov, T. V. Mordovskaya, and F. V. Nikol’sky, “Structure of the crust stacking in certain marginal parts of the Siberian Platform,” in Tectonics of Platform Regions (Nauka, Novosibirsk, 1988), pp. 169–173 [in Russian].

    Google Scholar 

  • E. D. Mullen, “MnO/TiO2/P2O5: a minor element discriminant for basaltic rocks of oceanic environments and its implication for petrogenesis,” Earth Planet. Sci. Lett. 62, 53–62 (1983).

    Article  Google Scholar 

  • R. W. Murray, M. R. Buchholtz ten Brink, and D. L. Jones, “Rare earth elements as indicator of different marine depositional environments in chert and shale,” Geology 18, 268–272 (1990).

    Article  Google Scholar 

  • R. D. Nance, J. B. Murphy, and M. Santosh “The supercontinental cycle: a retrospective essay,” Gondwana Res. 25, 4–29 (2014).

    Article  Google Scholar 

  • H. W. Nesbitt and G. M. Young, “Early Proterozoic climates and plate motions inferred from major element chemistry of lulites,” Nature 299, 715–717 (1982).

    Article  Google Scholar 

  • A. D. Nozhkin, A. S. Borisenko, and P. A. Nevol’ko, “Stages of Late Proterozoic magmatism and periods of Au mineralization in the Yenisei Ridge,” Russ. Geol. Geophys. 52 (1), 124–143 (2011).

    Article  Google Scholar 

  • A. D. Nozhkin, O. M. Turkina, E. V. Bibikova, A. A. Terleev, and V. V. Khomentovsky, “Riphean granite-gneiss cupolas of the Yenisei Ridge: geological structure and U-Pb isotope age,” Geol. Geofiz. 40 (9), 881–891 (1999).

    Google Scholar 

  • A. D. Nozhkin, O. M. Turkina, Yu. K. Sovetov, and A. V. Travin, “The Vendian accretionary event in the southwestern margin of the Siberian Craton,” Dokl. Earth Sci. 415 (6), 869–873 (2007).

    Article  Google Scholar 

  • A. D. Nozhkin, I. I. Likhanov, V. V. Reverdatto, and P. S. Kozlov, “Grenville orogeny, Late Neoproterozoic rift-related and intraplate magmatism at the western margin of the Siberian craton as geological evidence for the assembly and breakup of Rodinia,” in Rodinia 2013: Supercontinental Cycles and Geodynamics Symposium, Ed. by R. Veselovskiy and N. Lubnina (PERO Press, Moscow, 2013), p. 55.

    Google Scholar 

  • A. D. Nozhkin, O. M. Turkina, N. V. Dmitrieva, and I. I. Likhanov, “Age and P–T Parameters of Metamorphism of Metaterrigenous–Carbonate Deposits of the Derba Block (East Sayan),” Dokl. Earth Sci. 461 (5), 390–393 (2015).

    Article  Google Scholar 

  • J. A. Pearce, “Sources and settings of granitic rocks,” Episodes 19 (4), 120–125 (1996).

    Google Scholar 

  • J. A. Pearce, N. B. W. Harris, and A. G. Tindle, “Trace element discrimination diagrams for the tectonic interpretation of granitic rocks,” J. Petrol. 25, 956–983 (1984).

    Article  Google Scholar 

  • S. Pisarevsky, “Pre-Rodinian supercontinents: how “super” were they?” in Rodinia 2013: Supercontinental Cycles and Geodynamics Symposium, Ed. by R. Veselovskiy and N. Lubnina (PERO Press, Moscow, 2013), p. 58.

    Google Scholar 

  • N. V. Popov, I. I. Likhanov, and A. D. Nozhkin, “Mesoproterozoic granitoid magmatism in the Trans-Angara segment of the Yenisei Range: U–Pb evidence,” Dokl. Earth Sci. 431(4), 418–423 (2010).

    Article  Google Scholar 

  • M. W. Schmidt, “Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer,” Contrib. Mineral. Petrol. 110, 304–310 (1992).

    Article  Google Scholar 

  • S. S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” Geol. Soc. Sp. Publ. 42, 313–345 (1989).

    Article  Google Scholar 

  • G. H. Symmes and J. M. Ferry, “The effect of whole-rock MnO content on the stability of garnet in pelitic schists during metamorphism,” J. Metamorph. Geol. 10, 221–237 (1992).

    Article  Google Scholar 

  • S. R. Taylor, and S. M. McLennan, The Continental Crust: its Composition and Evolution (Blackwell, Oxford, 1985).

    Google Scholar 

  • S. R. Taylor and S. M. McLennan, “The geochemical evolution of the continental crust,” Rev. Geophys. 33, 241–265 (1995).

    Article  Google Scholar 

  • J. B. Thompson, “The graphical analysis of mineral assemblages in pelitic schists,” Am.Mineral. 42, 842–858 (1957).

    Google Scholar 

  • T. H. Torsvik, “The Rodinia Jigsaw puzzle,” Science 300, 1379–1381 (2003).

    Article  Google Scholar 

  • V. A. Vernikovsky and A. E. Vernikovskaya, “Tectonics and evolution of granitoid magmatism in the Yenisei Ridge,” Russ. Geol. Geophys. 47 (1), 35–50 (2006).

    Google Scholar 

  • V. A. Vernikovsky, A. Yu. Kazansky, N. Yu. Matushkin, D. V. Metelkin, and Yu. K. Sovetov, “The geodynamic evolution of the folded framing and the western margin of the Siberian craton in the Neoproterozoic: eological, structural, sedimentological, geochronological, and paleomagnetic data,” Russ. Geol. Geophys. 50 (4), 372–387(2009).

    Article  Google Scholar 

  • V. V. Vrublevsky, V. V. Reverdatto, A. E. Izokh, I. F. Gertner, D. S. Yudin, and P. A. Tishin, “Neoproterozoic carbonatite magmatism of the Yenisei Ridge, Central Siberia: 40Ar/39Ar geochronology of the Penchenga rock complex,” Dokl. Earth Sci. 437 (2), 443–448 (2011).

    Article  Google Scholar 

  • D. L. Whitney and B. W. Evans, “Abbreviations for names of rock-forming minerals,” Am. Mineral. 95, 185–187 (2010).

    Article  Google Scholar 

  • S. Wolfram, The Mathematica Book, 5th Ed. (Wolfram Media Inc., Champaign IL, 2003).

    Google Scholar 

  • D. A. Wood, “The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province,” Earth Planet. Sci. Lett. 50, 11–30 (1980).

    Article  Google Scholar 

  • C. M. Wu and G. C. Zhao, “Recalibration of the garnet–muscovite (GM) geothermometer and the garnet–muscovite–plagioclase–quartz (GMPQ) geobarometer for metapelitic assemblages,” J. Petrol. 47, 23570–2368 (2006).

    Article  Google Scholar 

  • C. M. Wu and G. C. Zhao, “The metapelitic garnet–biotite–muscovite–aluminosilicate–quartz (GBMAQ) geobarometer,” Lithos 97, 365–372 (2007).

    Article  Google Scholar 

  • C. M. Wu, J. Zhang, and L. D. Ren, “Empirical garnet–biotite–plagioclase–quartz (GBPQ) geobarometry in medium–to high–grade metapelites,” J. Petrol. 45, 1907–1921 (2004).

    Article  Google Scholar 

  • D. S. Yudin, A. A. Tomilenko, A. V. Travin, A. M. Agashev, N. P. Pokhilenko, and Yu. Orihashi, “The age of Udachnaya-East kimberlite: U/Pb and 40Ar/39Ar data,” Dokl. Earth Sci. 455(1), 288–290 (2014).

    Article  Google Scholar 

  • Ya. E. Yudovich, and M. P. Ketris, Principles of Lithochemistry (Nauka. St. Petersburg, 2000) [in Russian].

    Google Scholar 

  • E. A. Zvyagina, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (Irkutsk. Gos. Univ., Itrkutsk, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Likhanov.

Additional information

Original Russian Text © I.I. Likhanov, V.V. Reverdatto, 2016, published in Geokhimiya, 2016, No. 2, pp. 143–164.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Likhanov, I.I., Reverdatto, V.V. Geochemistry, petrogenesis and age of metamorphic rocks of the Angara complex at the junction of South and North Yenisei Ridge. Geochem. Int. 54, 127–148 (2016). https://doi.org/10.1134/S0016702916020051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702916020051

Keywords

Navigation