Skip to main content
Log in

Solid solutions of (Mg, Fe2+)-cordierite: Synthesis, water content, and magnetic properties

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The dependence of water concentration in synthetic (Mg, Fe2+)-cordierite on the composition of the solid solution was examined in experiments that lasted for 10 days at = 200–230 MPa, t = 600–700°C, and oxygen fugacity corresponding to the Fe-FeO buffer. Mass spectrometric data indicate that the dependence of water concentration in cordierite on its Fe mole fraction Fe2+/(Fe2+ + Mg) has maxima at compositions with F = 0.2–0.3. IR diffuse reflectance spectroscopic data and data on the structural setting of H2O molecules in the structural channels of alkali-free (Mg, Fe2+)-cordierite indicate that the H-H vector of some H2O molecules (H2O-II) is perpendicular to [001] of the crystal. The dependence of the magnetic properties of synthetic (Mg, Fe2+)-cordierite was studied by static magnetization technique at 5–300 K in an external magnetic field up to 20 kOe in strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. E. Damon and J. L. Kulp, “Excess Helium and Argon in Beryl and Other Minerals,” Am. Mineral. 43, 433–459 (1958).

    Google Scholar 

  2. J. V. Smith and W. Schreyer, “Location of Argon and Water in Cordierite,” Mineral. Mag. 33(258), 226–236 (1962).

    Article  Google Scholar 

  3. J-L. Zimmermann, “Application Petrogenetique de L’Etude de la Liberation de L’Eau et du Gaz Carbonique des Cordierites,” CR Acad. Sci 275D, 519–522 (1972).

    Google Scholar 

  4. J-L. Zimmermann, “Etude Par Spectrometric de Masse de la Composition des Fluides dans Quelques Cordierites du Sud de la Norvege,” Societe geologique de France, (1973).

  5. R. Beltrame, D. Norman, E. Alexander, and F. Savkins, “Volatiles Released by Step-Heating a Cordierite to 1200°C,” Trans. Am. Geophys. Union 57(4), 352 (1976).

    Google Scholar 

  6. J-L. Zimmermann, “La Libération de L’Eau, du Gaz Carbonigue et des Hydrocarbures des Cordierites. Cinétigue des Mécanismes. Determination des Sites. Intéret Petrogénétique,” Bull. Soc. Fr. Miner. Crist 104, 325–338 (1981).

    Google Scholar 

  7. T. Armbruster and F. D. Bloss, “Orientation and Effects of Channel H2O and CO2 in Cordierites,” Am. Mineral. 67, 284–291 (1982).

    Google Scholar 

  8. A. Mottana, A. Fusi, Potenza B. Bianchi, et al., “Hydrocarbon-Bearing Cordierite from Dervio-Colico Road Tunnel (Como, Italy),” Neues Jahrb. Mineral., Abh. 148, 181–199 (1983).

    Google Scholar 

  9. T. Armbruster, “Ar, N2 and CO2 in the Structural Cavities of Cordierite, an Optical and X-Ray Single-Crystal Study,” Phys. Chem. Miner. 12(4), 233–245 (1985).

    Article  Google Scholar 

  10. G. Yu. Shvedenkov, G. G. Lepezin, T. A. Bul’bak, and N. Yu. Osorgin, “Experimental Study of Saturation of Magnesian Cordierite in the Components of C-O-H Fluid,” Geokhimiya, No. 2, 251–262 (1995).

  11. G. G. Lepezin, T. A. Bul’bak, E. V. Sokol, and G. Yu. Shvedenkov, “Fluid Components in Cordierites and Their Significance for Metamorphic Petrology,” Geol. Geofiz. 40(1), 98–112 (1999).

    Google Scholar 

  12. V. M. Khomenko and K. Langer, “Aliphatic Hydrocarbons in Structural Channels of Cordierite: A First Evidence from Polarized Single-Crystal IR Absorption Spectroscopy,” Am. Mineral. 84(7–8), 1181–1185 (1999).

    Google Scholar 

  13. T. A. Bulbak, G. Yu. Shvedenkov, and G. G. Lepezin, “On Saturation of Magnesian Cordierite with Alkanes at High Temperatures and Pressures,” Phys. Chem. Miner. 29, 140–154 (2002).

    Article  Google Scholar 

  14. V. M. Khomenko, K. Langer, and A. Mottana, “Aliphatic Hydrocarbons in Structural Channels of Cordierite: The Dervio-Colico Cordierite Case Study,” in Micro- and Mesoporous Mineral Phases (Mineralogical, Crystallographic and Technological Aspects) (Accademia Nazionale dei Lincei, Rome, 2004), pp. 229–230.

    Google Scholar 

  15. T. A. Bul’bak and G. Yu. Shvedenkov, “Experimental Study on Incorporation of C-H-O-N Fluid Components in Mg-Cordierite,” Eur. J. Miner 17(6), 829–838 (2005).

    Article  Google Scholar 

  16. W. Schreyer and I. F. Schairer, “Compositions and Structural States of Anhydrous Mg-Cordierites: A Reinvestigation of the Central Part of the System MgO-Al2O3-SiO2,” J. Petrol. 2, 324–406 (1961).

    Google Scholar 

  17. W. Schreyer and F. Seifert, “Compatibility Relations of the Aluminium Silicates in the Systems MgO-Al2O3-SiO2-H2O and K2O-MgO-Al2O3-SiO2-H2O at High Pressures,” Am. J. Sci. 267, 371–388 (1969).

    Article  Google Scholar 

  18. F. Seifert and W. Schreyer, “Lower Temperature Stability Limits of Mg-Cordierite in the Range 1–7 Kbar Water Pressure: A Redetermination,” Contrib. Mineral. Petrol. 27, 225–238 (1970).

    Article  Google Scholar 

  19. R. C. Newton, “An Experimental Determination of the High-Pressure Stability Limits of Magnesian Cordierite under Wet and Dry Conditions,” J. Geol. 80(4), 398–420 (1972).

    Article  Google Scholar 

  20. W. Johannes and W. Schreyer, “Experimental Introduction of CO2 and H2O in to Mg-Cordierite,” Am. J. Sci. 281, 299–317 (1981).

    Article  Google Scholar 

  21. T. A. Bul’bak, G. Yu. Shvedenkov, and O. I. Ripinen, “Kinetics of H2O-CO2 Molecular Exchange in the Structural Channels of (Mg, Fe2+)-Cordierite,” Geokhimiya, No. 4, Geochem. Int. 43, 386–394 (2005)].

    Google Scholar 

  22. E. V. Sokol, E. N. Nigmatulina, G. G. Lepezin, V. V. Sharygin, A. E. Frenkel, and D. V. Kuzmin, “The Comparative Characteristic of the South Urals’ Basyte Paralavs and Lunar Basalts,” in Mineralogy of Technogenesis, (IM UB RAS, Miass, 2001), pp. 171–192.

    Google Scholar 

  23. E. V. Sokol, E. N. Nigmatulina, and N. I. Volkova, “Fluorine Mineralisation from Burning Coal Spoil-Heaps in the Russian Urals,” Mineral. Petrol. 75(1–2), 23–40 (2002).

    Article  Google Scholar 

  24. E. V. Sokol, N. V. Maksimova, E. N. Nigmatulina, et al., Pyrogenic Metamorphism (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2005) [in Russian].

    Google Scholar 

  25. C. Bertoldi, A. Proyer, D. Garbe-Schnberg, et al., “Comprehensive Chemical Analyses of Natural Cordierites: Implications for Exchange Mechanisms,” Lithos 78, 389–409 (2004).

    Article  Google Scholar 

  26. G. M. Brown, “Chemical Evidence for the Origin, Melting, and Differentiation of the Moon,” in The Origin of the Solar System, Ed. by S. F. Dermott (Willey, Chichester, 1978), pp. 597–609.

    Google Scholar 

  27. A. A. Marakushev, L. B. Granovskii, N. G. Zinov’eva, et al., Cosmic Petrology (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  28. L. H. Fuchs, “Occurrence of Cordierite and Aluminous Orthoenstatite in the Allende Meteorite,” Am. Mineral. 54, 1645–1653 (1969).

    Google Scholar 

  29. J. T. Wasson, Meteorites (Springer, New York, 1974).

    Google Scholar 

  30. E. King, Cosmic Geology (Mir, Moscow, 1979) [in Russian].

    Google Scholar 

  31. T. V. Gerya and L. L. Perchuk, “Thermodynamic Regime of the Evolution of the Granulites of the Angara-Kan Inlier,” Vestn. Mosk. Univ., Ser. 4: Geol., No. 6, 35–49 (1990).

  32. D. P. Carrington and S. L. Harley, “Cordierite As a Monitor of Fluid and Melt H2O Contents in the Lower Crust: An Experimental Calibration,” J. Geol. 24, 647–650 (1996).

    Article  Google Scholar 

  33. W. Schreyer and H. S. Yoder, “The System Mg-Cordierite-H2O and Related Rocks,” Neues Jahrb. Mineral., Abh. 101, 271–342 (1964).

    Google Scholar 

  34. L. C. Hsu and C. W. Burnham, “Phase Relationships in the System Fe3Al2Si3O12-Mg3Al2Si3O12-H2O at 2.0 Kilobars,” Geol. Soc. Am. Bull. 80, 2393–2408 (1969).

    Article  Google Scholar 

  35. M. J. Holdaway, “Mutual Compatibility Relations of the Fe2+-Mg-Al Silicates at 800°C and 3 Kb,” Am. J. Sci. 276, 285–308 (1976).

    Article  Google Scholar 

  36. A. E. Gunter, “Water in Synthetic Cordierites and Its Significance in the Experimental Reaction: Aluminous-Biotite + Sillimanite + Quartz = Iron-Cordierite + Sanidine + Water,” Geol. Assoc. Canada Annual Melting (Abstr.) 2, 22 (1977).

    Google Scholar 

  37. P. W. Mirwald, W. V. Maresch, and W. Schreyer, “Der Wassergehalt von Mg-Cordierit zwischen 500 und 800°C sowie 0.5 und 11 Kbar,” Fortschr. Mineral. 1, 101–103 (1979).

    Google Scholar 

  38. V. Kurepin, “Thermodynamics of Hydrous Cordierite, and Mineral Equilibria Involving It,” Geochem. Int. 16, 34–44 (1979).

    Google Scholar 

  39. R. C. Newton and B. J. Wood, “Thermodynamics of Water in Cordierite and Some Petrologic Consequences of Cordierite as a Hydrous Phase,” Contrib. Mineral. Petrol. 68, 391–405 (1979).

    Article  Google Scholar 

  40. W. Johannes and W. Schreyer, “Experimental Introduction of CO2 and H2O Into Mg-Cordierite,” Am. J. Sci. 281, 299–317 (1981).

    Article  Google Scholar 

  41. C. Boberski and W. Schreyer, “Synthesis and Water Contents of Fe2+-Bearing Cordierites,” Eur. J. Mineral. 2, 565–584 (1990).

    Google Scholar 

  42. G. G. Lepezin, “Estimation of Water Pressure Regime during Metamorphism of Cordierite-Bearing Complexes,” in Mineral Formation in the Endogenous Processes (Nauka, Novosibirsk, 1987), pp. 5–26 [in Russian].

    Google Scholar 

  43. T. A. Bul’bak and S. V. Shvedenkova, “Dependence of the Water Content in Channels of the Cordierite Structure on the Composition of Its Fe-Mg Solid Solutions,” Dokl. Akad. Nauk 419(5), 661–664 (2008) [Dokl. Earth Sci. 419A (3), 477–480 (2008)].

    Google Scholar 

  44. L. L. Perchuk, I. V. Lavrent’eva, L. Ya. Aranovich, and K. K. Podlesskii, Biotite-Garnet-Cordierite Equilibria and Metamorphic Evolution (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  45. G. G. Lepezin, I. K. Kuznetsova, Y. G. Lavrentev, and O. S. Chmelnicova, “Optical Methods of Determination of the Water Contents in Cordierites,” Contrib. Mineral. Petrol. 58(3), 319–329 (1976).

    Article  Google Scholar 

  46. G. G. Lepezin, V. N. Melenevskii, N. Yu. Osorgin, and S. A. Yurkovskii, “Determination of Diffusion Coefficients of Water in Cordierites,” Dokl. Akad. Nauk SSSR 268(5), 1218–1222 (1983).

    Google Scholar 

  47. V. A. Kurepin, “Calibration of Cordierite + Garnet + Sillimanite + Quartz Geobarometer with Allowance for H2O and CO2 Incorporation in Cordierite,” Geokhimiya, No. 2, 250–258 (1991).

  48. B. Mukhopadhyay and M. J. Holdaway, “Cordierite-Garnet-Sillimanite-Quartz Equilibrium: I. New Experimental Calibration in the System FeO-Al2O3-SiO2-H2O and Certain \( P - T - X_{H_2 O} \) Relations,” Contrib. Mineral. Petrol. 116, 462–472 (1994).

    Article  Google Scholar 

  49. D. L. Wood and K. Nassau, “Infrared Spectra of Foreign Molecules in Beryl,” J. Chem. Phys. 47, 2200–2228 (1967).

    Article  Google Scholar 

  50. E. F. Farrell and R. E. Newnham, “Electronic and Vibrational Absorption Spectra in Cordierite,” Am. Mineral. 52, 380–388 (1967).

    Google Scholar 

  51. D. S. Goldman, G. R. Rossman, and W. A. Dollase, “Channel Constituents in Cordierite,” Am. Mineral. 62, 1144–1157 (1977).

    Google Scholar 

  52. R. D. Aines and G. R. Rossman, “The High Temperature Behavior of Water and Carbon Dioxide in Cordierite and Beryl,” Am. Mineral. 69, 319–327 (1984).

    Google Scholar 

  53. B. Winkler, G. Goddens, and B. Hennion, “Movement of Channel H2O in Cordierite Observed with Quasi-Elastic Neutron Scattering,” Am. Mineral. 79, 801–808 (1994).

    Google Scholar 

  54. B. Winkler, V. Milman, and M. C. Payne, “Orientation, Location and Total Energy of Hydration of Channel H2O in Cordierite Investigated by Ab-Initio Total Energy Calculations,” Am. Mineral. 79, 202–204 (1994).

    Google Scholar 

  55. V. N. Stolpovskaya, E. V. Sokol, and G. G. Lepezin, “IR Spectroscopy of Water in Natural Cordierties,” Geol. Geofiz. 39, 65–73 (1998).

    Google Scholar 

  56. B. A. Kolesov and C. A. Geiger, “Cordierite II: The Role of CO2 and H2O,” Am. Mineral. 85, 1265–1274 (2000).

    Google Scholar 

  57. R. Roy, “Aids in Hydrothermal Experimentation. II. Methods of Making Mixtures for Both “Dry” and “Wet” Phase Equilibrium Studies,” J. Am. Ceram. Soc. 38(2), 145–146 (1956).

    Article  Google Scholar 

  58. D. L. Hamilton and W. S. Mackenzie, “Nepheline Solid Solution in the System NaAlSiO4-KAlSiO4-SiO2,” J. Petrol., No. 1, 56–72 (1960).

  59. A. I. Ponomarev, Methods of Chemical Analysis of Silicate and Carbonate Rocks (Akad. Nauk SSSR, Moscow, 1961) [in Russian].

    Google Scholar 

  60. Complexometry. Theoretical Principles and Practical Application (Gosudarstvennoe nauchno-tekhnicheskoe izdatel’stvo khimicheskoi literatury, Moscow, 1958), p. 246 [in Russian].

  61. G. Yu. Shvedenkov, V. V. Reverdatto, T. A. Bul’bak, and N. A. Bryksina, “Bimetasomatic Zoning in the CaO-MgO-SiO2-H2O-CO2 System: Experiments with the Use of Natural Rock Samples,” Petrologiya 14(5), 548–560 (2006) [Petrology 14, 515–527 (2006)].

    Google Scholar 

  62. W. Kraus and G. Nolze, “Powder Cell—A Program for the Representation and Manipulation of Crystal Structures and Calculation of the Resulting X-Ray Powder Patterns,” J. Appl. Crystallogr. 29, 301–303 (1996).

    Article  Google Scholar 

  63. G. M. Bancroft, Mössbauer Spectroscopy (McGraw-Hill, London, 1973).

    Google Scholar 

  64. C. A. Geiger, T. Armbruster, V. Khomenko, and S. Quartieri, “Cordierite I: The Coordination of Fe2+,” Am. Mineral. 85, 1255–1264 (2000).

    Google Scholar 

  65. E. V. Sokol, Y. V. Seryotkin, and T. A. Bul’bak, “Na-Li-Be Cordierite from the Murzinka Pegmatite Field, Middle Urals, Russia,” Europ. J. Mineral. (in press).

  66. K. R. Selkregg and F. D. Bloss, “Cordierites: Compositional Control of δ, Cell Parameters, and Optical Properties,” Am. Mineral. 65, 522–533 (1980).

    Google Scholar 

  67. A. M. Vakhrameev, Extended Abstract of Candidate Dissertation in Physics and Mathematics (Krasnoyarsk, 1979) [in Russian].

  68. M. Hunger, D. Freude, D. Fenzke, and H. Pfeifer, “1H-Solid-State NMR Studies of the Geometry of Brönsted Acid Sites in Zeolites H-ZSM-5,” Chem. Phys. Lett. 191, 391–395 (1992).

    Article  Google Scholar 

  69. Z. Luz and A. J. Vega, “Interaction of H-Rho Zeolite with Water and Methanol Studied by Multinuclear NMR Spectroscopy,” J. Phys. Chem. 91, 374–382 (1987).

    Article  Google Scholar 

  70. P. Batamack, C. Doremieux-Morin, R. Vincent, and J. Fraissard, “Wide-Line 1H NMR: A New Application for the Study of Brönsted Acidity Strength of Solids with HY Zeolite As Example,” Chem. Phys. Lett. 180, 545–550 (1991).

    Article  Google Scholar 

  71. P. Batamack, C. Doremieux-Morin, J. Fraissard, and D. Freude, “Broad-Line and High-Resolution NMR Studies Concerning the Hydroxonium Ion in HZSM-5 Zeolites,” J. Phys. Chem. 95, 3790–3796 (1991).

    Article  Google Scholar 

  72. M. Hunger, D. Freude, D. Fenzke, and H. Pfeifer, “1H-Solid-State NMR Studies of the Geometry of Brönsted Acid Sites in Zeolites H-ZSM-5,” Chem. Phys. Lett. 191, 391–395 (1992).

    Article  Google Scholar 

  73. P. Batamack, C. Doremieux-Morin, R. Vincent, and J. Fraissard, “Broad-Line 1H NMR—A New Application for Studying the Brönsted Acid Strength of Solids,” J. Phys. Chem. 97, 9779–9783 (1993).

    Article  Google Scholar 

  74. L. Marchese, J. S. Chen, P. A. Wright, and J. M. Thomas, “Formation of H3O+ at the Brönsted Site in SAPO-34 Catalysts,” J. Phys. Chem. 97, 8109–8112 (1993).

    Article  Google Scholar 

  75. L. M. Parker, D. M. Bibby, and G. R. Burns, “An Infrared Study of H2O and D2O on HZSM-5 and DZSM-5,” Appl. Spectr. 13, 107–112 (1993).6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Bulbak.

Additional information

Original Russian Text © T.A. Bulbak, S.V. Shvedenkova, 2011, published in Geokhimiya, 2011, Vol. 49, No. 4, pp. 411–426.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulbak, T.A., Shvedenkova, S.V. Solid solutions of (Mg, Fe2+)-cordierite: Synthesis, water content, and magnetic properties. Geochem. Int. 49, 391–406 (2011). https://doi.org/10.1134/S0016702911020042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702911020042

Keywords

Navigation