Skip to main content
Log in

Ultraelliptic Integrals and Two-Dimensional Sigma Functions

  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

This paper is devoted to the classical problem of the inversion of ultraelliptic integrals given by basic holomorphic differentials on a curve of genus 2. Basic solutions F and G of this problem are obtained from a single-valued 4-periodic meromorphic function on the Abelian covering W of the universal hyperelliptic curve of genus 2. Here W is the nonsingular analytic curve W = {u =(u1, u3) ∈ ℂ2: σ(u) = 0}, where σ(u) is the two-dimensional sigma function. We show that G(z) = F(ξ(z)), where z is a local coordinate in a neighborhood of a point of the smooth curve W and ξ(z) is the smooth function in this neighborhood given by the equation σ(u1, ξ(u1)) = 0. We obtain differential equations for the functions F(z), G(z), and ξ(z), recurrent formulas for the coefficients of the series expansions of these functions, and a transformation of the function G(z) into the Weierstrass elliptic function ℘ under a deformation of a curve of genus 2 into an elliptic curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Adler and J. Moser, “On a class of polynomials connected with the Korteweg-de Vries equation,” Comm. Math. Phys., 61:1978 (1978), 1–30.

    Article  MathSciNet  Google Scholar 

  2. T. Ayano and V. M. Buchstaber, “Construction of two parametric deformation of KdV-hierarchy and solution in terms of meromorphic functions on the sigma divisor of a hyperelliptic curve of genus 3,” SIGMA, 15 (2019), 032; https://arxiv.org/abs/1811.07138.

    MathSciNet  MATH  Google Scholar 

  3. H. F. Baker, An Introduction to the Theory of Multiply-Periodic Functions, Cambridge Univ. Press, Cambridge, 1907.

    MATH  Google Scholar 

  4. A. B. Bogatyrev, “Conformal mapping of rectangular heptagons,” Mat. Sb., 203:2012 (2012), 35–56; English transl.: Sb. Math., 203:12 (2012), 1715–1735.

    Article  MathSciNet  Google Scholar 

  5. A. B. Bogatyrev and O. A. Grigor’ev, “Conformal mapping of rectangular heptagons II,” Comput. Methods Funct. Theory, 18:2018 (2018), 221–238.

    Article  MathSciNet  Google Scholar 

  6. V. M. Buchstaber, V. Z. Enolskii, and D. V. Leikin, “Kleinian functions, hyperelliptic Jacobians and applications,” in: Reviews in Mathematics and Math. Physics, v. 10, part 2, Gordon and Breach, London, 1997, 3–120.

    MATH  Google Scholar 

  7. V. M. Buchstaber, V. Z. Enolskii, and D. V. Leikin, “Hyperelliptic Kleinian functions and applications,” in: Solitons, Geometry and Topology: On the Crossroad, Amer. Math. Soc. Trans. Ser. 2, vol. 179, Amer. Math. Soc., Providence, RI, 1997, 1–33.

    Google Scholar 

  8. V. M. Buchstaber, V. Z. Enolskii, and D. V. Leikin, “Rational analogues of Abelian functions,” Funkts. Anal. Prilozhen., 33:1999 (1999), 1–15; English transl.: Functional Anal. Appl., 33:2 (1999), 83–94.

    Article  MathSciNet  Google Scholar 

  9. V. M. Buchstaber, V. Z. Enolski, and D. V. Leykin, Multi-dimensional sigma-functions, https://arxiv.org/abs/1208.0990.

  10. V. M. Buchstaber, “Polynomial dynamical systems and the Korteweg-de Vries equation,” in: Modern Problems of Mathematics, Mechanics, and Mathematical Physics. II, Collected papers, Trudy Mat. Inst. Steklova, vol. 294, MAIK Nauka/Interperiodica, Moscow, 2016, 191–215; English transl.: Proc. Steklov Inst. Math., 294 (2016), 176–200; https://arxiv.org/abs/1605.04061.

    Google Scholar 

  11. V. M. Buchstaber, V. Z. Enolski, and D. V. Leykin, “Sigma-functions: old and new results,” in: Integrable Systems and Algebraic Geometry, LMS Lecture Notes Series, vol. 2, Cambridge Univ. Press, Cambridge, 2019; https://arxiv.org/abs/1810.11079.

    Google Scholar 

  12. V. Z. Enolski, E. Hackmann, V. Kagramanova, J. Kunz, and C. Lammerzahl, “Inversion of hyperelliptic integrals of arbitrary genus with application to particle motion in general relativity,” J. Geom. Phys., 61:2011 (2011), 899–921.

    Article  MathSciNet  Google Scholar 

  13. V. Enolski, B. Hartmann, V. Kagramanova, J. Kunz, C. Lämmerzahl, and P. Sirimachan, “Inversion of a general hyperelliptic integral and particle motion in Horava-Lifshitz black hole space-times,” J. Math. Phys., 53:1 (2012), 012504.

    Article  MathSciNet  Google Scholar 

  14. V. Z. Enolskii, M. Pronine, and P. H. Richter, “Double pendulum and θ-divisor,” J. Nonlinear Sci., 13:2003 (2003), 157–174.

    Article  MathSciNet  Google Scholar 

  15. J. D. Fay, Theta Functions on Riemann Surfaces, Lecture Notes in Math., vol. 352, Springer-Verlag, Berlin-New York, 1973.

    Book  Google Scholar 

  16. D. Grant, “A generalization of Jacobi’s derivative formula to dimension two,” J. Reine Angew. Math., 392 (1988), 125–136.

    MathSciNet  MATH  Google Scholar 

  17. D. Grant, “A generalization of a formula of Eisenstein,” Proc. London Math. Soc., 62:1991 (1991), 121–132.

    Article  MathSciNet  Google Scholar 

  18. E. Hackmann, V. Kagramanova, J. Kunz, and C. Lämmerzahl, “Analytic solutions of the geodesic equation in higher dimensional static spherically symmetric spacetimes,” Phys. Rev. D, 78 (2008), 124018.

    Article  MathSciNet  Google Scholar 

  19. E. Hackmann, V. Kagramanova, J. Kunz, and C. Lämmerzahl, “Analytic solutions of the geodesic equation in axially symmetric space-times,” EPL (Europhysics Letters), 88:3 (2009), 30008.

    Article  Google Scholar 

  20. E. Hackmann and C. Lämmerzahl, “Complete analytic solution of the geodesic equation in Schwarzschild-(anti-)de Sitter spacetimes,” Phys. Rev. Lett., 100 (2008), 171101.

    Article  MathSciNet  Google Scholar 

  21. E. Hackmann and C. Laämmerzahl, “Geodesic equation in Schwarzschild-(anti-)de Sitter spacetimes: analytical solutions and applications,” Phys. Rev. D, 78 (2008), 024035.

    Article  MathSciNet  Google Scholar 

  22. E. Hackmann, C. Laämmerzahl, V. Kagramanova, and J. Kunz, “Analytical solution of the geodesic equation in Kerr-(anti-)de Sitter space-times,” Phys. Rev. D, 81 (2010), 044020.

    Article  MathSciNet  Google Scholar 

  23. J. Jorgenson, “On directional derivatives of the theta function along its divisor,” Israel J. Math., 77:1992 (1992), 273–284.

    Article  MathSciNet  Google Scholar 

  24. A. I. Markushevich, Introduction to the Classical Theory of Abelian Functions, Trans. Math. Monographs, vol. 96, Amer. Math. Soc., Providence, RI, 1992.

    MATH  Google Scholar 

  25. S. Matsutani, “Recursion relation of hyperelliptic psi-functions of genus two,” Integral Transforms Spec. Funct., 14:2003 (2003), 517–527.

    Article  MathSciNet  Google Scholar 

  26. A. Nakayashiki, “On algebraic expressions of sigma functions for (n, s) curves,” Asian J. Math., 14:2010 (2010), 175–212; https://arxiv.org/abs/0803.2083.

    Article  MathSciNet  Google Scholar 

  27. Y. Onishi, “Complex multiplication formulae for hyperelliptic curves of genus three,” Tokyo J. Math., 21:1998 (1998), 381–431.

    Article  MathSciNet  Google Scholar 

  28. Y. Onishi, “Determinant expressions for Abelian functions in genus two,” Glasg. Math. J., 44:2002 (2002), 353–364.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to A. B. Bogatyrev and V. Z. Enolski for stimulating discussions and literature references.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Ayano or V. M. Buchstaber.

Additional information

To the memory of the remarkable mathematician I. M. Dektyarev (1940–2002)

Russian Text © The Author (s), 2019. Published in Funktsional’nyi Analiz i Ego Prilozheniya, 2019, Vol. 53, No. 3, pp.3–22.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayano, T., Buchstaber, V.M. Ultraelliptic Integrals and Two-Dimensional Sigma Functions. Funct Anal Its Appl 53, 157–173 (2019). https://doi.org/10.1134/S0016266319030018

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016266319030018

Key words

Navigation