Skip to main content
Log in

Plane Vortex Flows of an Incompressible Fluid

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

A review of fundamental theoretical studies concerning plane vortex flows in an incompressible fluid is presented. Problems connected with flow in the vicinity of the point of a vortex sheet vanishing from a solid surface, with self-similar flows of an ideal and viscous fluid, with flow in the cores of spiral vortex sheets, with the stability and diffusion of vortex flows, and with the development of a theory of boundary-layer separation from a solid surface are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig.10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.

Similar content being viewed by others

REFERENCES

  1. Betyaev, S.K., Evolution of vortex sheets, in Dinamika sploshnoi sredy so svobodnymi poverkhnostyami (Dynamics of Continuous Medium with Free Surfaces), Cheboksary: Chuvash State Univ. Named after I. N. Ulyanov, 1980, pp. 27–38.

  2. Landau, L.D. and Lifshits, E.M., Course of Theoretical Physics, vol. 6: Fluid Mechanics, Oxford: Pergamon Press, 1987.

    MATH  Google Scholar 

  3. Sedov, L.I., Mekhanika sploshnoi sredy (Mechanics of Continuous Medium), Moscow: Nauka, 1983, vol. 1.

  4. Il'ichev, K.P. and Postolovskii, S.N., Calculation of the breakaway flow of a flat stream of a non-viscous liquid around bodies, Fluid Dyn., 1972, vol. 7, no. 2, pp. 72–82.

    Article  Google Scholar 

  5. Imai, I., Discontinuous potential flow as the limiting form of the viscous flow for vanishing viscosity, J. Phys. Soc. Jpn., 1953, vol. 8, no. 3, pp. 399–402.

    Article  ADS  MathSciNet  Google Scholar 

  6. Birkhoff, G. and Zarantonello, E., Jets, Wakes and Cavities, New York: Academic Press, 1957.

    MATH  Google Scholar 

  7. Prandtl, L., Uber dieEntstehung von Wirbeln in der idealen Flusigkeit, mit Anwendung auf die Tragflugeltheorie und andere Aufgaben. Vortrage auf dem Gebiete der Hydro- und Aerodynamik, Innsbruck, 1922, Herausgegeben von Karman, Th. und Levi-Civita, T., Berlin: Springer, 1924.

    Google Scholar 

  8. Munk, M.M., The Aerodynamic Forces on Airship Hulls, NACA Report no. 184, 1924, pp. 451–468.

  9. Jones, R.T., Properties of Low-Aspect-Ratio Pointed Wings at Speeds Below and Above the Speed of Sound, NACA Report no. 835, 1946, pp. 59–63.

  10. Adams, M.C. and Sears, W.R., Slender-body theory—review and extension, J. Aeronaut. Sci., 1953, vol. 20, no. 2, pp. 85–98.

    Article  MathSciNet  MATH  Google Scholar 

  11. Mangler, K.W. and Smith, J.H.B., A theory of the flow past a slender delta wing with leading-edge separation, Proc. R. Soc. A, 1959, vol. 251, pp. 200–217.

    ADS  MathSciNet  MATH  Google Scholar 

  12. Smith, J.H.B., Improved calculations of leading-edge separation, Proc. R. Soc. A, 1968, vol. 306, pp. 67–90.

    ADS  MATH  Google Scholar 

  13. Molchanov, V.F., On the implementation of the planar cross-section method for nonlinear theory of wing, Uch. Zap. TsAGI, 1974, vol. 5, no. 2, pp. 1–9.

    Google Scholar 

  14. Sudakov, G.G., Calculation of the separation flow near a thin triangular wing of small elongation, Uch. Zap. TsAGI, 1974, vol. 5, no. 2, pp. 10–18.

    Google Scholar 

  15. Karman, T., Accelerated flow of an incompressible fluid with wake formation, Ann. Mat. Pura Appl., 1949, vol. 29, p. 4.

    Article  MathSciNet  MATH  Google Scholar 

  16. Gilbarg, D., Unsteady flows with free boundaries, Z. Angew. Math. Phys., 1952, vol. 3, p. 1.

    Article  MathSciNet  MATH  Google Scholar 

  17. Gurevich, M.I., Teoriya strui ideal’noi zhidkosti (Theory of Ideal Fluid Jets), Moscow: Nauka, 1979.

  18. Alexander, R.C., Family of similarity flows with vortex sheets, Phys. Fluids, 1971, vol. 14, no. 2, pp. 231–239.

    Article  ADS  MATH  Google Scholar 

  19. Mangler, K.W. and Weber, J., The flow field near the center of a rolled-up vortex sheet, J. Fluid Mech., 1967, vol. 30, part 1, pp. 177–196.

    Article  ADS  MATH  Google Scholar 

  20. Betyaev, S.K. and Gaifullin, A.M., Large-scale structure of the core of a spiral discontinuity in a fluid, Fluid Dyn., 1982, vol. 17, no. 5, pp. 698–704.

    Article  ADS  MATH  Google Scholar 

  21. Gaifullin, A.M. and Malanichev, V.A., Asymptotic structure of inviscid core of spiral contact breaking, Uch. Zap. TsAGI, 1985, vol. 16, no. 1, pp. 104–107.

    Google Scholar 

  22. Nikol’skii, A.A., On the “second” form of motion of ideal fluid near streamlined body (study of separation vortex flows), Dokl. Akad. Nauk SSSR, 1957, vol. 116, no. 2, pp. 193–196.

    MathSciNet  Google Scholar 

  23. Nikol’skii, A.A., Betyaev, S.K., and Malyshev, I.P., O predel’noi forme otryvnogo avtomodel’nogo techeniya ideal’noi zhidkosti. K 60-letiyu akademika A.A. Dorodnitsyna (On the Limiting Form of Separation Self-Similar Flow of Ideal Fluid. To the 60th Anniversary of the Birth of Academician A.A. Dorodnitsyn), Moscow: Nauka, 1971, pp. 262–268.

  24. Golovkin, M.A., Golovkin, V.A., and Kalyavkin, V.M., Voprosy vikhrevoi gidromekhaniki (Problems on Vortex Hydromechanics), Moscow: Fizmatlit, 2009.

  25. Belotserkovskii, S.M. and Nisht, M.I., Otryvnoe i bezotryvnoe obtekanie tonkikh kryl’ev ideal’noi zhidkost’yu (Separation and Continuous Flow Around Thin Wings by Ideal Liquid), Moscow: Nauka, 1978.

  26. Birkhoff, G., Helmholtz and Taylor instability, in Hydrodynamic Instability, Birkhoff, G., Bellman, R., and Lin, C.C., Eds., New York: American Mathematical Society, 1962, pp. 55–76.

    Book  MATH  Google Scholar 

  27. Loitsyanskii, L.G., Mekhanika zhidkosti i gaza (Fluid and Gas Mechanics), Moscow: Nauka, 1978.

  28. Gaifullin, A.M., Self-similar unsteady viscous flow, Fluid Dyn., 2005, vol. 40, no. 4, pp. 526–531.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Abramowitz, M. and Stegun, I.A., Eds., New York: Dover Publ., 1972.

  30. Neiland, V.Ya., Theory of laminar boundary layer separation in supersonic flow, Fluid Dyn., 1969, vol. 4, no. 4, pp. 33–35.

    MATH  Google Scholar 

  31. Stewartson, K. and Williams, P.G., Self-induced separation, Proc. R. Soc. London, Ser. A, 1969, vol. 312, no. 1509, pp. 181–206.

    Article  ADS  MATH  Google Scholar 

  32. Sychev, V.V., Laminar separation, Fluid Dyn., 1972, vol. 7, no. 3, pp. 407–417.

    Article  ADS  MATH  Google Scholar 

  33. Sychev, V.V., Ruban, A.I., Sychev, Vik.V., and Korolev, G.L., Asimptoticheskaya teoriya otryvnykh techenii (Asymptotic Theory of Separation Flows), Sychev, V.V., Ed., Moscow: Nauka, 1987.

    Google Scholar 

  34. Veldman, A.E.P., New, quasi-simultaneous method to calculate interacting boundary layers, AIAA J., 1981, vol. 19, no. 1, pp. 79–85.

    Article  ADS  MATH  Google Scholar 

  35. Gaifullin, A.M. and Zakharov, S.B., Method for calculating separation flow around circular cone taking into account viscous-inviscid interaction, Uch. Zap. TsAGI, 1990, vol. 21, no. 6, p. 49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Gaifullin.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by O.Polyakov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaifullin, A.M. Plane Vortex Flows of an Incompressible Fluid. Fluid Dyn 58 (Suppl 1), S1–S34 (2023). https://doi.org/10.1134/S0015462823600219

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462823600219

Keywords:

Navigation