Skip to main content
Log in

Tangential Shear Stress in Oscillatory Flow of a Viscoelastic Incompressible Fluid in a Plane Channel

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The problems of oscillatory flow of a viscoelastic incompressible fluid in a plane channel are solved for a given harmonic oscillation of the fluid flow rate. The transfer function (amplitude–phase frequency response) is determined. Using this function, the effect of the acceleration oscillation frequency and the relaxation properties of fluid on the ratio of the tangential shear stress on channel wall to the velocity averaged over the channel cross-section (cross-sectional velocity) is determined. It is shown that the viscoelastic properties of fluid, as well as its acceleration, are the limiting factors for using the quasi-stationary approach. The found formulas for determining the transfer function for viscoelastic fluid flow in the case of non-stationary stream make it possible to determine the dissipations of mechanical energy in a non-stationary flow of the medium which are of importance for calculation of the control of hydraulic and pneumatic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Marx, U., Wallis, H., Hoffmann, S., Linder, G., Harland, R., Sonntag, F., Klotzbach, U., Sakharov, D., Tonevitskiy, A., and Lonster, R., “Homan-on-a-chip” developments: a translational cutting-edge alternative to systemic safety assessment and effecting evacuation in laboratory animals and man? ATLA, 2012, vol. 40, pp. 235–257.

    Google Scholar 

  2. Inman, W., Domanskiy, K., Serdy, J., Ovens, B., Trimper, D., and Griffith, L.G., Dishing modeling and fabrication of a constant flow pneumatic micropump, J. Micromech. Microeng., 2007, vol. 17, pp. 891–899.

    Article  ADS  Google Scholar 

  3. Akilov, Zh.A., Nestatysionarnye dvizheniya vyazkouprugikh zhidkostei (Unsteady Flows of Viscoelastic Fluids), Tashkent: Fan, 1982.

  4. Khuzhayorov, B.Kh., Reologicheskie svoistva smesei (Rheological Properties of Mixtures), Samarkand: Sogdiana, 2000.

  5. Mirzadzhanzade, A.Kh., Karaev, A.K., and Shirinzade, S.A., Gidravlika v burenii i tsementirovanii neftyanykh i gazovykh skvazhin (Hydraulics in Oil and Gas Well Drilling and Cementing), Moscow: Nedra, 1977.

  6. Gromeka, I.S., On the theory of motion of a fluid in narrow cylindrical pipes, in: Collected Works, Moscow: 1952, pp. 149–171.

  7. Gromeka, I.S, On the velocity of propagation of a wave-shaped motion of a fluid in elastic pipes, in: Collected Works, Moscow: 1952, pp. 172–183.

  8. Crandall, I.B., Theory of Vibrating Systems and Sounds, New York: D. Van Nostrand Co., 1926.

    Google Scholar 

  9. Lambossy, P., Oscillations foresees d’un liquids incompressible et visqulux dans un tube rigide et horizontal calculi de IA force de frottement, Helv. Physiol. Acta, 1952, vol. 25, pp. 371–386.

    MathSciNet  MATH  Google Scholar 

  10. Womersly, J.R., Method for the calculation of velocity rate of flow and viscous drag in arteries when the pressure gradient is known, J. Physiol., 1955, no. 3, p. 553–563.

  11. Richardson, E.G. and Tyler, E., The transverse velocity gradient near the mouths of pipes in which an alternating or continuous flow of air is established, Pros. Phys. Soc., 1929, vol. 42, no. 1.

  12. Popov, D.N. and Mokhov, I.G., Experimental investigation of the local velocity profiles in a pipe in oscillations of the viscous fluid flow rate, Izv. Vuzov, Mashinostroenie, 1971, no. 7, pp. 91–95.

  13. Uchida, S., The pulsating viscous flow superposed on the stead laminar motion of incompressible fluid in a circular pipe, ZAMP, 1956, vol. 7, no. 5, pp. 403–422.

    MathSciNet  MATH  ADS  Google Scholar 

  14. Ünsal, B., Ray, S., Durst, F., and Ertunç, Ö., Pulsating laminar pipe flows with sinusoidal mass flux variations, Fluid Dynamics Research, 2005, vol. 37, pp. 317–333.

    Article  MATH  ADS  Google Scholar 

  15. Zigel’, R. and Perlmutter, M., Heat transfer in pulsating channel flow, Teploperedacha, 1962, no. 2, pp. 18–32.

  16. Faizullaev, D.F. and Navruzov, K., Gidrodinamika pul’siruyushchikh potokov (Hydrodynamics of Pulsating Flows), Tashkent: Fan, 1986.

  17. Valueva, E.P. and Purdin, M.S., Hydrodynamics and heat transfer of a pulsating flow in channels, Teploenergetika, 2015, no. 9, pp. 24–33.

  18. Valueva, E.P. and Purdin, M.S., Pulsating flow in a rectangular channel, Teplofiz. Aerodin., 2015, vol. 22, no. 6, pp. 761–773.

    Google Scholar 

  19. Tsangaris, S. and Vlachakis, N.W., Exact solution of the Navier−Stokes equations for the fully developed, pulsing flow in a rectangular duct with a constant cross-sectional velocity, J. Fluids Eng., 2003, vol. 125, pp. 382–385.

    Article  MATH  Google Scholar 

  20. Tsangaris, S. and Vlachakis, N.W., Exact solution of the Navier–Stokes equations for the oscillating flow in a duct of a cross-section of right-angled isosceles triangle, ZAMP, 2003, vol. 54, pp. 1094–1100.

    MathSciNet  MATH  ADS  Google Scholar 

  21. Tsangaris, S. and Vlachakis, N.W., Exact solution for the pulsating finite gap Dean flow, Appl. Math. Modelling, 2007, vol. 3, pp. 1899–1906.

    Article  MATH  Google Scholar 

  22. Georgievskii, D.V., Estimates of exponential damping of perturbations superimposed on longitudinal harmonic oscillations of the viscous layer, Differ. Uravneniya, 2020, vol. 56, no. 10, pp. 1366–1375.

    MathSciNet  Google Scholar 

  23. Jons, J.R. and Walters, T.S., Flow of elastic-viscous liquids in channels under the influence of a periodic pressure gradient. Part 1, Rheol. Acta, 1967, vol. 6, pp. 240–245.

    Article  Google Scholar 

  24. Khabakhpasheva, E., Popov, V., Kekalov, A., and Mikhailova, E., Pulsating flow of viscoelastic fluids in tubes, J. Non-Newtonian Fluid Mech., 1989, vol. 33 (3), pp. 289–304.

    Article  Google Scholar 

  25. Casanellas, L. and Ortıґn, J., Laminar oscillatory flow of Maxwell and Oldroyd-B fluids: Theoretical analysis, J. Non-Newtonian Fluid Mech., 2011, vol. 166, pp. 1315–1326.

    Article  MATH  Google Scholar 

  26. Hassan, A. Abu-El, and El-Maghawry, E. M., Unsteady axial viscoelastic pipe flows of an Oldroyd B fluid, in: Rheology—New Concepts, Applications and Methods, Ed. by Durairaj R., Published by InTech., 2013, Ch. 6., pp. 91–106.

    Google Scholar 

  27. Akilov, Zh.A., Dzhabbarov, M.S., and Khuzhayorov, B.Kh., Tangential shear stress under the periodic flow of a viscoelastic fluid in a cylindrical tube, Fluid Dyn., 2021, vol. 56, no. 2, pp. 189–199.

    Article  MathSciNet  ADS  Google Scholar 

  28. Ding, Z. and Jian, Y., Electrokinetic oscillatory flow and energy microchannelis: a linear analysis, J. Fluid. Mech., 2021, vol. 919, no. A20, pp. 1–31.

    Article  MathSciNet  Google Scholar 

  29. Popov, D.N., Nestatsionarnye gidromekhanicheskie protsessy (Unsteady Hydrodynamic Processes), Moscow: Mashinostroenie, 1982.

  30. Astarista, G. and Marrucci, G., Principles of Non-Newtonian Fluid Mechanics, New York: McGraw-Hill, 1974.

    Google Scholar 

  31. Loitsyanskii, L.G., Mekhanika zhidkosti i gaza (Mechanics of Liquid and Gas), Moscow: Drofa, 2003.

  32. Kolesnichenko, V.I. and Sharifulin, A.N., Vvedenie v mekhaniku neszhimaemoi spedy (Introduction to Mechanics of an Incompressible Medium), Perm: Izd. Perm. Issl. Polit. Un-ta, 2019.

  33. Navruzov, K., Gidrodinamika pul’siruyushchikh techenii v truboprovodakh (Hydrodynamics of Pulsating Flows in Pipelines), Tashkent: Fan, 1986.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. B. Sharipova.

Additional information

Translated by E.A. Pushkar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navruzov, K., Sharipova, S.B. Tangential Shear Stress in Oscillatory Flow of a Viscoelastic Incompressible Fluid in a Plane Channel. Fluid Dyn 58, 360–370 (2023). https://doi.org/10.1134/S0015462822602261

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462822602261

Keywords:

Navigation