Skip to main content
Log in

Numerical Simulation of Flow around Rigid Rotor in Forward Flight

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The study is devoted to the numerical simulation of flow around the rigid helicopter main rotor in forward flight based on the averaged Navier—Stokes equations in a noninertial reference frame. The calculations are performed using the in-house code NOISEtte, whose distinctive feature is the use of schemes with edge-based reconstruction of variables on unstructured mixed-element mesh, together with the commercial ANSYS CFX software package. The numerically obtained aerodynamic characteristics of the main rotor are compared with the data of physical experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. Here, the unstructured mixed-element mesh is a mesh consisting of the following elements: hexahedrons, triangular prisms, tetrahedrons, quadrangular pyramids.

REFERENCES

  1. I.V. Abalakin, V.A. Anikin, P.A. Bakhvalov, V.G. Bobkov, and T.K. Kozubskaya, “Numerical investigation of the aerodynamic and acoustical properties of a shrouded rotor,” Fluid Dynamics51(3), 419–433 (2016).

    Article  MathSciNet  Google Scholar 

  2. A. Gorobets, “Parallel Algorithm of the NOISEtte Code for CFD and CAA Simulations,” Lobachevskii Journal of Mathematics, 2018, Vol. 39, No. 4, pp. 524–532.

  3. S.A. Karabasov, “Using the hybrid method in modeling the noise of high-speed helicopter blades,” Mat. Model.18(2), 2–23 (2006).

    Google Scholar 

  4. V.F. Kopiev, V.A. Titarev, and I.V. Belyaev, “Development of a methodology for propeller noise calculations on high-performance computers,” TsAGI Sci. J. 45(3–4), 293–327 (2014).

  5. Yu.M. Ignatkin and S.G. Konstantinov, “CFD investigation of the aerodynamic characteristics of the main helicopter rotor,” Trudy MAI, No. 57 (2012).

  6. A. Batrakov, L. Garipova, A. Kusyumov, S. Mikhailov, and G. Barakos, “Computational fluid dynamics modeling of helicopter fuselage drag,” J. Aircraft52(5), 1634–1643 (2015). https://doi.org/10.2514/1.C033019

    Article  Google Scholar 

  7. L. Garipova, A. Batrakov, A. Kusyumov, S. Mikhaylov, and G. Barakos, “Aerodynamic and acoustic analysis of helicopter main rotor blade tips in hover,” Intern. J. Numer. Methods for Heat and Fluid Flow26(7), 2101–2118 (2016). https://doi.org/10.1108/HFF-08-2015-0348

    Article  Google Scholar 

  8. V.F. Kopiev, M.Yu. Zaytsev, V.I. Vorontsov, S.A. Karabasov, and V.A. Anikin, “Helicopter noise in hover: computational modeling and experimental validation,” Acoust. Physics63(6), 686–698 (2017).

    Article  ADS  Google Scholar 

  9. I.V. Abalakin and T.K. Kozubskaya, “Quasi-one-dimensional edge-based reconstruction scheme for solving problems of aerodynamics and aeroacoustics on unstructured meshes,” Mat. Model. 25(8), 109–136 (2013).

    MathSciNet  MATH  Google Scholar 

  10. P.A. Bakhvalov, “Quasi-one-dimensional reconstruction scheme on convex polygonal meshes for solving aeroacoustic problems,” Mat. Model. Computer Simulations6(2), 192–202 (2014).

    Article  MathSciNet  Google Scholar 

  11. I. Abalakin, P. Bakhvalov, and T. Kozubskaya. “Edge-based reconstruction schemes for prediction of near field flow region in complex aeroacoustics problems,” Int. J. Aeroacoust.13(3–4), 207–234 (2014). https://doi.org/10.1260/1475-472X.13.3-4.207

    Article  Google Scholar 

  12. I. Abalakin, P. Bakhvalov, and T. Kozubskaya, “Edge-based reconstruction schemes for unstructured tetrahedral meshes,” Intern. J. Numer. Meth. Fluids81(6), 331–356 (2016). https://doi.org/10.1002/fld.4187

    Article  ADS  MathSciNet  Google Scholar 

  13. L.S. Pavlov, “Pressure distribution in the sections of a rectangular wing (blade) in curvilinear motion in an incompressible medium,” Uch. Zap. TsAGI10(2), 104–108 (1979).

    Google Scholar 

  14. W. Johnson, Helicopter Theory (Dover Publ., New York, 2013).

    Google Scholar 

  15. P.R. Spalart and S.R. Allmaras, “A one-equation turbulence model for aerodynamic flows,” AIAA Paper No. 0439 (1992). https://doi.org/10.2514/6.1992-439

  16. F.R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J. 32(8), 1598–1605 (1994). https://doi.org/10.2514/3.12149

    Article  ADS  Google Scholar 

  17. I. Belov and S. Isaev, Simulation of Turbulent Flows. A Textbook (Baltic State Techn. Univ., St. Petersburg, 2001) [in Russian].

    Google Scholar 

  18. D.C. Wilcox, Turbulence Modeling for CFD (DCW Industries, La Canada, Ca., 2006).

    Google Scholar 

  19. H. Reichard, “Vollständige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen,” Zeitschrift Angew. Math. Mech. 31, 208–219 (1951).

    Article  ADS  Google Scholar 

  20. Y. Saad, Iterative Methods for Sparse Linear Systems (Society for Industrial and Applied Mathematics, Philadelphia, 2003).

    Book  Google Scholar 

  21. ANSYS, Inc. ANSYS, 1970–2018. URL www.ansys.com.

  22. R. Cucitore, M. Quadrio, and A. Baron, “On the effectiveness and limitations of local criteria for the identification of a vortex,” Europ. J. Mechanics – B/Fluids 18(2), 261–282 (1999). https://doi.org/10.1016/s0997-7546(99)80026-0

    Article  ADS  MathSciNet  Google Scholar 

  23. Research Center Kurchatov Institute, URL http://computing.nrcki.ru/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Bobkov.

Ethics declarations

The Authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Translated by M. Lebedev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abalakin, I.V., Bobkov, V.G., Kozubskaya, T.K. et al. Numerical Simulation of Flow around Rigid Rotor in Forward Flight. Fluid Dyn 55, 534–544 (2020). https://doi.org/10.1134/S0015462820040011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462820040011

Keywords:

Navigation