Skip to main content
Log in

RANS/ILES Analysis of the Flow Pattern and the Acoustic Characteristics of a Supersonic Off-Design Jet at Large Nozzle Pressure Ratios

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The outflow of a cold supersonic off-design jet with the nozzle pressure ratio of 21.8 is calculated using the high-resolution RANS/ILES method. For the nozzle under consideration and at the given nozzle pressure ratio the exit-to-ambient pressure ratio is 0.6. The jet is characterized by a long supersonic region with many “barrels.” The calculations are validated against the experimental data. The fluctuating and acoustic characteristics of the jet flow under consideration are compared with the characteristics of other supersonic jets. The geometric dimensions of the barrels and the acoustic properties of the jet are estimated from the known empirical relations for supersonic jets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Li, B. Muddle, M. Jahedi, and J. Soria, “Numerical investigation of the cold spray process using underexpanded and overexpanded jets,” J. Thermal Spray Techn. 21 (1), 108 (2012).

    Article  ADS  Google Scholar 

  2. H. Tabbara, S. Gu, and D. G. McCartney, “Computational modelling of titanium particles in warm spray,” Computers Fluids 44, 358 (2011).

    Article  MATH  Google Scholar 

  3. Jafari Hamed, Emami Sobhan, and Mahmoudi Yasser, “Numerical investigation of dual-stage high velocity oxy-fuel (HVOF) thermal spray process: a study on nozzle geometrical parameters,” Applied Thermal Eng. 111, 745 (2017).

    Article  Google Scholar 

  4. D.A. Benderskii and D.A. Lyubimov, “Analysis of the nozzle exit flow parameter effect on the turbulence characteristics and the noise level in jets issuing from nozzles of different types,” Fluid Dynamics 50 (6), 812 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  5. Y.-H. Kweon, Y. Miyazato, T. Aoki, H.-D. Kim, and T. Setoguchi, “Control of supersonic jet noise using a wire device,” J. Sound Vibr. 297, 167 (2006).

    Article  ADS  Google Scholar 

  6. V. Vuorinen, J. Yu, S. Tirunagari, O. Kaario, M. Larmi, C. Duwig, and B. J. Boersma, “Large-eddy simulation of highly underexpanded transient gas jets,” Phys. Fluids 25, 016101 (2013).

    Article  ADS  Google Scholar 

  7. K. Kailasanath, J. Liu, E. Gutmark, D. Munday, and S. Martens, “Impact of mechanical chevrons on supersonic jet flow and noise,” in: Proceedings of ASME Turbo Expo 2009: Power for Land, Sea and Air. GT2009-59307.

  8. M. S. Antipova, A. A. Dyad'kin, V. I. Zapryagaev, and A. N. Krylov, “Computer simulation of the outflow of a cold supersonic jet,” Kosm. Tekhn. Tekhnol. No. 1 (12), 5 (2016).

    Google Scholar 

  9. V. I. Zapryagaev, I. N. Kavun, and S. G. Kundasev, “Numerical and experimental investigation of the gasdynamic structure of a supersonic overexpanded jet,” Vestn. Novosibirsk Univ. Ser. Fizika 8 (4), 84 (2013).

    Google Scholar 

  10. D. A. Lyubimov, “Development and application of a high-resolution technique for jet flow computations using large eddy simulation,” High Temperature 50 (3), 420 (2012).

    Article  Google Scholar 

  11. A. Sureshand H. T. Huynh, “accurate monotonicity-preserving schemes with Runge—Kutta time stepping,” J. Comput. Phys. 136 (1), 83 (1997).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1987).

    Google Scholar 

  13. J. E. Ffowcs Williams and D. L. Hawkings, “Sound generated by turbulence and surfaces in unsteady motion,” Phil. Trans. Roy. Soc. Sen A 264 (91141), 321 (1969).

    Article  MATH  ADS  Google Scholar 

  14. Y. Ozyoruk and L. Long, “A new efficient algorithm for computational aeroacoustics on parallel processors,” J. Comput. Phys. 125, 135 (1996).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. L. A. Benderskii, D. A. Lyubimov, I. V. Potekhina, and A. E. Fedorenko, “Application of the high resolution RANS/ILES technology for flow simulation and the nearby acoustic field of Near-Wall jets,” TsAGI Sci. J. 47(2), 159 (2016).

    Article  Google Scholar 

  16. D. C. Pack, “A note on prandtl's formula for the wavelength of a supersonic gas jet,” Quart. J. Mech. Appl. Math. 3, 173 (1950).

    Article  MathSciNet  MATH  Google Scholar 

  17. C. K. W Tarn, J. M. Seiner, and J. C. Yu, “Proposed relationship between broadband shock associated noise and screech tones,” J. Sound Vibr. 110 (2), 309 (1986).

    Article  ADS  Google Scholar 

  18. N. Heeb, E. Gutmark, and K Kailasanath, “Impact of chevron spacing and asymmetric distribution on supersonic jet acoustics and flow,” J. Sound Vibr. 370, 54 (2016).

    Article  ADS  Google Scholar 

  19. D. Munday, E. Gutmark, J. Liu, and K Kailasanath, “Flow structure and acoustics of supersonic jets from conical convergent-divergent nozzles,” Phys. Fluids 23 (11), 116102 (2011).

    Article  ADS  Google Scholar 

  20. J. Liu, A. Corrigan, K Kailasanath, R. Ramammurti, N. Neeb, D. Munday, and E. Gutmark, “Impact of deck and jet blast deflector on the flow and acoustic properties of imperfectly expanded supersonic jets,” AIAA Paper No. 323 (2013).

  21. J. C. Lau, “Effects of exit mach numbers and temperature on mean-flow and turbulence characteristics in round jets,” J. Fluid Mech. 105, 193 (1981).

    Article  ADS  Google Scholar 

  22. B. G. Jones, R. J. Adrian, C. K Nithianandan, and H. P. Planchon, “Spectra of turbulent static pressure fluctuations in jet mixing layers,” AIAA J. 17 (5), 449 (1979).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank V. I. Zapryagaev who initiated this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Lyubimov.

Additional information

Russian Text © The Author(s), 2019, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2019, No. 1, pp. 115–123.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayupov, R.S., Benderskii, L.A. & Lyubimov, D.A. RANS/ILES Analysis of the Flow Pattern and the Acoustic Characteristics of a Supersonic Off-Design Jet at Large Nozzle Pressure Ratios. Fluid Dyn 54, 114–122 (2019). https://doi.org/10.1134/S0015462819010038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462819010038

Keywords

Navigation