Skip to main content
Log in

One-dimensional compression of bounded volumes of a self-gravitating gas

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Unsteady plane and spherically-symmetric self-gravitating gas flows are analytically and numerically studied. It is assumed that the gas is enclosed in a plane layer of finite thickness or in a bounded spherical volume. Two characteristic compression patterns are established, namely, a quasiperiodic regime in which gravitational equilibrium is attained and a fast compression regime with a many orders increase in the density. The quasiperiodic regime is realized when the layer thickness is fairly small as compared with the Jeans length. The fast compression occurs when the layer thickness is greater than the Jeans length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Schwarzschild, Structure and Evolution of the Stars, Princeton Univ. Press, Princeton (1963).

    Google Scholar 

  2. V.S. Safronov, Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  3. H. Alfvén and G. Arrhenius, Evolution of the Solar System, NASA SP-345, Washington, D.C. (1976).

  4. V.M. Lipunov, Astrophysics of Neutron Stars [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  5. J.H. Jeans, Astronomy and Cosmogony, Dover Publ., New York (1961).

    Google Scholar 

  6. B.G. Elmegreen and C.J. Lada, “Sequential Formation of Subgroups in OB Associations,” Astrophys. J. 214, 725 (1977).

    Article  ADS  Google Scholar 

  7. M.S. Kirsanova, A.M. Sobolev, M. Thomasson, D.S. Wiebe, L.E.B. Johansson, and A.F. Seleznev, “Star Formation around the HII Region Sh2-235,” Mon. Not. Roy. Astron. Soc. 388, 729 (2008).

    Article  ADS  Google Scholar 

  8. J. Wang, E.D. Feigelson, L.K. Townsley, P.S. Broos, C.G. Roman-Zuciga, E. Lada, and G. Garmiren, “A Chandra Study of the Rosette Star-Forming Complex. III. The NGC 2237 Cluster and the Region’s Star Formation History,” Astrophys. J. 716, 474 (2010).

    Article  ADS  Google Scholar 

  9. C. Watson, U. Hanspal, and A. Mengistu, “Triggered Star Formation and Dust around Mid-Infrared-Identified Bubbles,” Astrophys. J. 716, 1478 (2010).

    Article  ADS  Google Scholar 

  10. M. Pomares, A. Zavagno, L. Deharveng, M. Cunningham, P. Jones, S. Kurtz, D. Russeil, J. Caplan, and F. Comeryn, “Triggered Star Formation on the Borders of the Galactic HII Region RCW82,” Asron. Astrophys. 494, 987 (2009).

    Article  ADS  Google Scholar 

  11. V.B. Baranov and K.V. Krasnobaev,Hydrodynamic Theory of Space Plasma [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  12. S.A. Kaplan and S.V. Pikelner, Physics of the Interstellar Medium [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  13. L. Spitzer Jr., Physical Processes in the Interstellar Medium,Wiley (1978).

  14. B.G. Elmegreen, “On the Gravitational Collapse of Decelerating Shocked Layers in OB Associations,” Astrophys. J. 340, 786 (1989).

    Article  ADS  Google Scholar 

  15. A. Mizuta, J.O. Kane, M.W. Pound, B.A. Remington, D.D. Ryutov, and H. Takabe, “Formation of Pillars at the Boundaries between HII Regions and Molecular Clouds,” Astrophys. J. 647, 1151 (2006).

    Article  ADS  Google Scholar 

  16. D. Whalen and M.L. Norman, “Ionization Front Instabilities in Primordial HII Regions,” Astrophys. J. 673, 664 (2008).

    Article  ADS  Google Scholar 

  17. G.Yu. Kotova and K.V. Krasnobaev, “Acceleration of a Neutral Spherical Shell Formed by an Ionization-Shock Front in an Inhomogeneous Interstellar Medium,” Pisma Astron. Zh. 35, 189 (2009).

    ADS  Google Scholar 

  18. G.Yu. Kotova and K.V. Krasnobaev, “Numerical Modeling of Unstable Two-Dimensional Motions of a Circumstellar Shell,” Pisma Astron Zh. 36, 506 (2010).

    ADS  Google Scholar 

  19. K.V. Krasnobaev and R.R. Tagirova, “Richtmeyer-Meshkov Instability Manifestation in an Inhomogeneous Interstellar Medium with Luminescence,” Pisma Astron. Zh. 35, 364 (2009).

    ADS  Google Scholar 

  20. S. Orlando, F. Bocchino, F. Reale, G. Peres, and P. Pagano, “The Importance of Magnetic-Field-Oriented Thermal Conduction in the Interaction of SNR Shocks with Interstellar Clouds,” Astrophys. J. 678, 274 (2008).

    Article  ADS  Google Scholar 

  21. A.P. Boss, S.A. Keiser, S.I. Ipatov, E.A. Myhill, and H.A.T. Vanhala, “Triggering Collapse of the Presolar Dense Cloud Core and Injecting Short-Lived Radioisotopes with a Shock Wave. I. Varied Shock Speeds,” Astrophys. J. 708, 1268 (2010).

    Article  ADS  Google Scholar 

  22. L.I. Sedov, Similarity and Dimensional Methods, CRC Press, Boca Raton (1993).

    Google Scholar 

  23. G.M. Fikhtengoltz, Textbook on Differential and Integral Calculus. Vol. 2 [in Russian], Fizmatgiz, Moscow (1959).

    Google Scholar 

Download references

Authors

Additional information

Original Russian Text © S.I. Arafailov, K.V. Krasnobaev, R.R. Tagirova, 2012, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2012, Vol. 47, No. 3, pp. 7–17.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arafailov, S.I., Krasnobaev, K.V. & Tagirova, R.R. One-dimensional compression of bounded volumes of a self-gravitating gas. Fluid Dyn 47, 292–300 (2012). https://doi.org/10.1134/S0015462812030027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462812030027

Keywords

Navigation