Skip to main content
Log in

Low-Temperature deN2O Catalyst Based on Co3O4 for a Single-Reactor Unit for the Removal of Nitrogen Oxides in Nitric Acid Production

  • CHEMICAL TECHNOLOGY
  • Published:
Doklady Chemistry Aims and scope Submit manuscript

Abstract

Cesium-promoted cobalt spinel is promising as a catalyst for the low-temperature decomposition of nitrous oxide for use in the second stage of a single-reactor unit for the combined removal of nitrogen oxides. This work studied the effect of the conditions for the preparation of granular and block bulk catalysts based on Co3O4 by extrusion molding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Tian, H., Chen, G., Lu, C., Xu, X., Ren, W., Zhang, B., Banger, K., Tao, B., Pan, S., Liu, M., Zhang, C., Bruhwiler, L., and Wofsy, S., Ecosyst. Health Sustain., 2014, vol. 1, no. 4, p. 1. https://doi.org/10.1890/EHS14-0015.1

    Article  Google Scholar 

  2. Tuckett, R., in Reference Module in Chemistry, Molecular Sciences, and Chemical Engineering, Amsterdam: Elsevier, 2018. https://doi.org/10.1016/B978-0-12-409547-2.14031-4.

  3. Chumachenko, V.A., Isupova, L.A., Ivanova, Yu.A., Ovchinnikova, E.V., Reshetnikov, S.I., and Nos-kov, A.S., Chem. Sustain. Dev., 2020, vol. 28, no. 2, pp. 210–219. https://doi.org/10.15372/KhUR2020221

    Article  CAS  Google Scholar 

  4. Kapteijn, F., Rodriguez-Mirasol, J., and Moulijn, J.A., Appl. Catal. B, 1996, vol. 9, pp. 25–64. https://doi.org/10.1016/0926-3373(96)90072-7

    Article  CAS  Google Scholar 

  5. Pérez-Ramirez, J., Kapteijn, F., Schöffel, K., and Moulijn, J.A., Appl. Catal., 2003, vol. 44, pp. 117–151. https://doi.org/10.1016/S0926-3373(03)00026-2

    Article  CAS  Google Scholar 

  6. Vernikovskaya, N.V., Sheboltasov, A.G., and Chumachenko, V.A., Kataliticheskaya ochistka otkhodya-shchikh gazov ot oksidov azota (NO x i N 2 O) v proizvodstve nekontsentrirovannoi azotnoi kisloty (Catalytic Purification of Exhaust Gases from Nitrogen Oxides (NOx and N2O) in the Production of Nonconcentrated Nitric Acid), Novosibirsk: Izd-vo NGTU, 2021.

  7. Predel’no dopustimye kontsentratsii (PDK) zagryaznya-yushchikh veshchestv v atmosfernom vozdukhe gorodskikh i sel’-skikh poselenii. Gigienicheskie normativy GN 2.1.6.3492-17 (Maximum Permissible Concentrations (MPC) of Pollutants in the Atmospheric Air of Urban and Rural Settlements. Hygiene standards HS 2.1.6.3492-17).

  8. Brushtein, E.A., Vanchurin, V.I., and Yashchenko, A.V., Katal. Prom–sti., 2012, vol. 4, p. 7.

    Google Scholar 

  9. Groves, M.C.E. and Sasonow, A., J. Integr. Environ. Sci., 2010, vol. 7, no. S1, pp. 211–222. https://doi.org/10.1080/19438151003621334

    Article  Google Scholar 

  10. Hu, X., Wang, Y., Wu, R., and Zhao, Y., Appl. Surf. Sci., 2021, vol. 538, p. 148157. https://doi.org/10.1016/j.apsusc.2020.148157

    Article  CAS  Google Scholar 

  11. Grzybek, G., Grybos, J., Indyka, P., Janas, J., Ciura, K., Leszczynsk, B., Zasada, F., Kotarba, A., and Sojka, Z., Appl. Catal. B, 2021, vol. 297, p. 120435. https://doi.org/10.1016/j.apcatb.2021.120435

    Article  CAS  Google Scholar 

  12. Hu, X., Wang, Y., Wu, R., and Zhao, Y., Mol. Catal., 2021, vol. 509, p. 111656. https://doi.org/10.1016/j.mcat.2021.111656

    Article  CAS  Google Scholar 

  13. Inger, M., Moszowski, B., Ruszak, M., Rajewski, J., and Wilk, M., Catalysts, 2020, vol. 10, p. 987. https://doi.org/10.3390/catal10090987

    Article  CAS  Google Scholar 

  14. Tian-qi, Z., Qiang, G., Wei-ping, L., and Xiu-feng, X., J. Fuel Chem Technol., 2019, vol. 47, no. 9, pp. 1120–1128. https://doi.org/10.1016/S1872-5813(19)30046-5

    Article  Google Scholar 

  15. Wang, Y., Zhou, X., Wei, X., Li, X., Wu, R., Hu, X., and Zhao, Y., Mol. Catal., 2021, vol. 501, p. 111370. https://doi.org/10.1016/j.mcat.2020.111370

    Article  CAS  Google Scholar 

  16. Zhe, D., Hai-jie, Z., Yan-fei, P., and Xiu-feng, X., J. Fuel Chem. Technol., 2014, vol. 42, no. 2, pp. 238–245. https://doi.org/10.1016/S1872-5813(14)60016-5

    Article  Google Scholar 

  17. Konsolakis, M., ACS Catal., 2015, vol. 5, no. 11, pp. 6397–6421. https://doi.org/10.1021/acscatal.5b01605

    Article  CAS  Google Scholar 

  18. Stelmachowski, P., Maniak, G., Kaczmarczyk, J., Zasada, F., Piskorz, W., Kotarba, A., and Sojka, Z., Appl. Catal. B, 2014, vol. 146, pp. 105–111. https://doi.org/10.1016/j.apcatb.2013.05.027

    Article  CAS  Google Scholar 

  19. Won-Hyun, E. and Muhammad, A., J. Nanosci. Nanotechnol., 2016, vol. 16, no. 5, pp. 4647–4654. https://doi.org/10.1166/jnn.2016.11026

    Article  CAS  Google Scholar 

  20. Yu, H., Tursun, M., Wang, X., and Wu, X., Appl. Catal. B, 2016, vol. 185, pp. 110–118. https://doi.org/10.1016/j.apcatb.2015.12.011

    Article  CAS  Google Scholar 

  21. Zhang, C., Zhang, Z., Sui, C., Yuan, F., Niu, X., and Zhu, Y., ChemCatChem, 2016, vol. 8, no. 12, pp. 1992–1992. https://doi.org/10.1002/cctc.201600683

    Article  Google Scholar 

  22. Chromcakova, Z., Obalova, L., Kovanda, F., Legut, D., Titov, A., Ritz, M., Fridrichova, D., Michalik, S., Kustrowski, P., and Jiratova, K., Catal. Today, 2015, vol. 257, pp. 18–25. https://doi.org/10.1016/j.cattod.2015.03.030

    Article  CAS  Google Scholar 

  23. Ivanova, Y.A., Sutormina, E.F., Isupova, I.A., and Vovk, E.I., Kinet. Catal., 2017, vol. 58, no. 6, p. 793. https://doi.org/10.1134/S002315841705007X

    Article  CAS  Google Scholar 

  24. Ivanova, Y.A., Sutormina, E.F., Isupova, L.A., and Rogov, V.A., Kinet. Catal., 2018, vol. 59, no. 3, p. 357. https://doi.org/10.1134/S0023158418030072

    Article  CAS  Google Scholar 

  25. Isupova, L.A. and Ivanova, Yu.A., Kinet. Catal., 2019, vol. 60, no. 6, pp. 725–740. https://doi.org/10.1134/S0453881119060054

    Article  Google Scholar 

  26. Stelmachowski, P., Maniak, G., Kotarba, A., and Sojka, Z., Catal. Commun., 2009, vol. 10, pp. 1062–1065. https://doi.org/10.1016/j.catcom.2008.12.057

    Article  CAS  Google Scholar 

  27. Pasha, N., Lingaiah, N., Seshu Babu, N., Siva Sankar Reddy, P., and Sai Prasad, P.S., Catal. Commun., 2008, vol. 10, pp. 132–136. https://doi.org/10.1016/j.catcom.2008.06.006

    Article  CAS  Google Scholar 

  28. Maniak, G., Stelmachowski, P., Kotarba, A., Sojka, Z., Rico-Pérez, V., and Bueno-López, A., Appl. Catal. B, 2013, vol. 136–137, pp. 302–307. https://doi.org/10.1016/j.apcatb.2013.01.068

    Article  CAS  Google Scholar 

  29. Ohnishi, C., Asano, K., Iwamoto, S., Chikama, K., and Inoue, M., Catal. Today, 2007, vol. 120, pp. 145–150. https://doi.org/10.1016/j.cattod.2006.07.042

    Article  CAS  Google Scholar 

  30. Hai-peng, W., Wen-jing, L., Li, G., Yan-fei, P., and Xiu-feng, X., J. Fuel Chem. Technol., 2011, vol. 39, no. 7, pp. 550–555. https://doi.org/10.1016/S1872-5813(11)60034-0

    Article  Google Scholar 

  31. Grzybek, G., Stelmachowski, P., Gudyka, S., Duch, J., Cmil, K., Kotarba, A., and Sojka, Z., Appl. Catal. B, 2015, vol. 168–169, pp. 509–514. https://doi.org/10.1016/j.apcatb.2015.01.005

    Article  CAS  Google Scholar 

  32. Isupova, L.A. and Ivanova, Y.A., Russ. J. Phys. Chem., 2021, vol. 95, no. 3, pp. 503–511. https://doi.org/10.31857/S0044453721030134

    Article  CAS  Google Scholar 

  33. Isupova, L.A., Candidate’s Dissertation in Chemistry, Novosibirsk, 1989.

  34. Shchukin, E.D., Pertsov, A.V., and Amelina, E.A., Kolloidnaya khimiya (Colloid Chemistry), Moscow: Yurait, 2014.

  35. Umanskii, Ya.S., Skakov, Yu.A., Ivanov, A.N., and Rastorguev, L.N., Kristallografiya, rentgenografiya i elektronnaya mikroskopiya (Crystallography, Radiography, and Electron Microscopy), Moscow: Metallurgiya, 1982.

  36. Grzybek, G., Wojcik, S., Legutko, P., Grybos, J., Indyka, P., Leszczynsk, B., Kotarba, A., and Sojka, Z., Appl. Catal. B, 2017, vol. 205, pp. 597–604. https://doi.org/10.1016/j.apcatb.2017.01.005

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported within the framework of the state assignment for the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia (project no. АААА-А21-121011490008-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Isupova.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by V. Glyanchenko

This work is submitted to the special issue “Heterogeneous catalysis and environmental protection.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isupova, L.A., Ivanova, Y.A. Low-Temperature deN2O Catalyst Based on Co3O4 for a Single-Reactor Unit for the Removal of Nitrogen Oxides in Nitric Acid Production. Dokl Chem 511, 202–208 (2023). https://doi.org/10.1134/S0012500823600347

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012500823600347

Keywords:

Navigation