Skip to main content
Log in

Multiarm Star Polymers. Fundamental Aspects. A Review

  • CHEMISTRY
  • Published:
Doklady Chemistry Aims and scope Submit manuscript

Abstract

The review is devoted to the analysis of the currently available data in the field of the molecular organization of multiarm stars, macromolecules-particles characterized by the dualism of macromolecular and colloidal properties. Until now, the question of the predominance of polymeric or colloidal behavior for such objects remains open. The distinctive properties of multiarm stars—very low intrinsic viscosity and the formation of monomolecular micelles—are determined by the peculiarities of their molecular organization. The appearance of dendrimers as the initial branching centers made it possible to create a representative number of objects, and this allowed one to study the property–structure relationship for this group of objects at a new qualitative level. The results obtained are important for studying the factors that determine the “anomalous” behavior of macromolecules-particles, such as dendrimers, nanogels, and dense molecular brushes, and provide an important experimental basis for theoretical understanding of the behavior of these objects as a function of their structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Muzafarov, A.M., Vasilenko, N.G., Tatarinova, E.A., Ignat’eva, G.M., Myakushev, V.D., Obrezkova, M.A., Meshkov, I.B., Voronina, N.V., and Novozhilov, O.V., Polym. Sci. Ser. C, 2011, vol. 53, no. 7, pp. 1217–1230. https://doi.org/10.1134/S1811238211070022

    Article  CAS  Google Scholar 

  2. Meshkov, I.B., Kalinina, A.A., Kazakova, V.V., and Demchenko, A.I., INEOS OPEN, 2020, vol. 3, no. 4, pp. 118–132. https://doi.org/10.32931/io2022r

    Article  CAS  Google Scholar 

  3. Voit, B.I. and Lederer, A., Chem. Rev., 2009, vol. 109, pp. 5924–5973. https://doi.org/10.1021/cr900068q

    Article  CAS  PubMed  Google Scholar 

  4. Drohmann, C., Moller, M., Gorbatsevich, O.B., and Muzafarov, A.M., J. Polym. Sci. A Polym. Chem., 2000, vol. 38, no. 4, pp. 741–751. https://doi.org/10.1002/(SICI)1099-0518(20000215)38:4<741::AID-POLA9>3.0.CO;2-V

    Article  CAS  Google Scholar 

  5. Gao, C. and Yan, D., Prog. Polym. Sci., 2004, vol. 29, pp. 183–275. https://doi.org/10.1016/j.progpolymsci.2003.12.002

    Article  CAS  Google Scholar 

  6. Dvornic, P.R. and Tomalia, D.A., Curr. Opin. Colloid Interface Sci., 1996, vol. 1, no. 2, p. 221. https://doi.org/10.1016/S1359-0294(96)80008-2

    Article  CAS  Google Scholar 

  7. Tatarinova, E.A., Rebrov, E.A., Myakushev, V.D., Meshkov, I.B., Demchenk,o N.V., Bystrova, A.V., Lebedeva, O.V., and Muzafarov, A.M., Izv. Akad.Nauk, Ser. Khim., 2004, vol. 11, pp. 2484–2493.

    Google Scholar 

  8. Muzafarov, A.M., Tatarinova, E.A., Vasilenko, N.V., and Ignat’eva, G.M., in Organosilicon Compounds, Lee, V.Ya., Ed., 2017, chap. 8, pp. 323–375. eBook ISBN: 9780128019917 Paperback ISBN: 9780128019818

  9. Birshtein, T.M., Borisov, O.V., Zhulina, Ye.B., Khokhlov, A.R., and Yurasova, T.A., Polym. Sci. U.S.S.R., 1987, vol. 29, no. 6, pp. 1293–1300. https://doi.org/10.1016/0032-3950(87)90374-1

    Article  Google Scholar 

  10. Sheiko, S.S., Sumerlin, B.S., and Matyjaszewski, K., Prog. Polym. Sci., 2008, vol. 33, pp. 759–785. https://doi.org/10.1016/j.progpolymsci.2008.05.001

    Article  CAS  Google Scholar 

  11. Filippov, A., Kozlov, A., Tarabukina, E., Obrezkova, M., and Muzafarov, A., Polym. Int., 2016, vol. 65, pp. 393–399. https://doi.org/10.1002/pi.5067

    Article  CAS  Google Scholar 

  12. Obrezkova, M.A., Vasilenko, N.G., Myakushev, V.D., and Muzafarov, A.M., Polym. Sci. Ser. B, 2009, vol. 51, no. 11/12, pp. 457–464. https://doi.org/10.1134/S1560090409110062

    Article  Google Scholar 

  13. Zhulina, E.B., Sheiko, S.S., and Borisov, O.V., Polym. Sci. Ser. A, 2019, vol. 61, no. 6, pp. 553–558. https://doi.org/10.1134/S230811201906018X

    Article  Google Scholar 

  14. Prokacheva, V.M., Polotskii, A.A., and Birshtein, T.M., Polym. Sci. Ser. A, 2020, vol. 62, no. 1, pp. 3–17. https://doi.org/10.31857/S2308112020010083

    Article  Google Scholar 

  15. Gorbatsevich, O.B., Kholodkov, D.N., Kurkin, T.S., Malakhova, Yu.N., Strel’tsov, D.R., Buzin, A.I., Kazakova, V.V., and Muzafarov, A.M., Russ. Chem. Bull., 2017, vol. 66, no. 3, pp. 409–417. https://doi.org/10.1007/s11172-017-1748-1

    Article  CAS  Google Scholar 

  16. Oh, J.K., Drumright, R., Siegwart, D.J., and Matyjaszewski, K., Prog. Polym. Sci., 2008, vol. 33, pp. 448–477. https://doi.org/10.1016/j.progpolymsci.2008.01.002

    Article  CAS  Google Scholar 

  17. Migulin, D., Tatarinova, E., Meshkov, I., Cherkaev, G., Vasilenko, N., Buzin, M., and Muzafarov, A., Polym. Int., 2016, vol. 65, pp. 72–83. https://doi.org/10.1002/pi.5029

    Article  CAS  Google Scholar 

  18. Kazakova, V.V., Gorbatsevich, O.B., Malakhova, Yu.N., Buzin, A.I., and Muzafarov, A.M., Russ. Chem. Bull. Int. Ed., 2018, vol. 67, no. 11, pp. 2088–2097. https://doi.org/10.1007/s11172-018-2333-y

    Article  CAS  Google Scholar 

  19. Roovers, J., Toporowski, P., and Martin, J., Macromolecules, 1989, no. 4, pp. 1897–1903. https://doi.org/10.1021/ma00194a064

  20. Grest, G.S., Kremer, K., and Wittent, T.A., Macromolecules, 1987, vol. 20, no. 6, pp. 1376–1383. https://doi.org/10.1021/ma00172a035

    Article  CAS  Google Scholar 

  21. Hadjichristidis, N. and Fetters, L.J., Macromolecules, 1980, vol. 13, no. 1, p. 191–193. https://doi.org/10.1021/ma60073a037

    Article  CAS  Google Scholar 

  22. Vasil’ev, V.G., Kramarenko, E.Y., Tatarinova, E.A., Milenin, S.A., Kalinina, A.A., Papkov, V.S., and Muzafarov, A.M., Polymer, 2018, vol. 146, pp. 1–5. https://doi.org/10.1016/j.polymer.2018.05.016

    Article  CAS  Google Scholar 

  23. Uppuluri, S., Keinath, S.E., Tomalia, D.A., and Dvornic, P.R., Macromolecules, 1998, vol. 31, no. 14, pp. 4498–4510. https://doi.org/10.1021/ma971199b

    Article  CAS  Google Scholar 

  24. Dvornic, P.R. and Uppuluri, S., Dendrimers and Other Dendritic Polymers, Frechet, J.M.J. and Tomalia, D.A., eds., Chichester: Wiley, 2002, pp. 331–358. https://doi.org/10.1002/0470845821.ch14

  25. Tatarinova, E.A., Voronina, N.V., Bystrova, A.V., Buzin, M.I., and Muzafarov, A.M., Macromol. Symp., Special Issue: Molecular Order and Mobility in Polymer Systems, 2009, vol. 278, no. 1, pp. 14–23. https://doi.org/10.1002/masy.200950403

  26. Liang, H., Cao, Z., Wang, Z., Sheiko, S.S., and Dobrynin, A.V., Macromolecules, 2017, vol. 50, no. 8, pp. 3430–3437. https://doi.org/10.1021/acs.macromol.7b00364

    Article  CAS  Google Scholar 

  27. Daniel, W.F.M., Xie, G., Vatankhah Varnosfaderani, M., Burdyńska, J., Li, Q., Nykypanchuk, D., Gang, O., Matyjaszewski, K., and Sheiko, S.S., Macromolecules, 2017, vol. 50, no. 5, pp. 2103–2111. https://doi.org/10.1021/acs.macromol.7b00030

    Article  CAS  Google Scholar 

  28. Kapnistos, M., Vlassopoulos, D., Roovers, J., and Leal, L.G., Macromolecules, 2005, vol. 38, p. 7852. https://doi.org/10.1021/ma050644x

    Article  CAS  Google Scholar 

  29. Kapnistos, M., Koutalas, G., Hadjichristidis, N., Roovers, J., Lohse, D.J., and Vlassopoulos, D., Rheol. Acta, 2006, vol. 46, no. 2, p. 273. https://doi.org/10.1007/s00397-006-0106-2

    Article  CAS  Google Scholar 

  30. Sheiko, S.S. and Dobrynin, A.V., Macromolecules, 2019, vol. 52, pp. 7531–7546. https://doi.org/10.1021/acs.macromol.9b01127

    Article  CAS  Google Scholar 

  31. Voronina, N.V., Meshkov, I.B., Myakushev, V.D., Demchenko, N.V., Laptinskaya, T.V., and Muzafarov, A.M., Nanotech. Russia, 2008, vol. 3, no. 5/6, pp. 321–329. https://doi.org/10.1134/S1995078008050078

    Article  Google Scholar 

  32. Voronina, N.V., Meshkov, I.B., Myakushev, V.D., Laptinskaya, T.V., Papkov, V.S., Buzin, M.I., Il’ina, M.N., Ozerin, A.N., and Muzafarov, A.M., J. Polym. Sci., 2010, vol. 48, no. 19, pp. 4310–4322. https://doi.org/10.1002/pola.24219

    Article  CAS  Google Scholar 

  33. Malkin, A.Ya., Polyakova, M.Yu., Subbotin, A.V., Meshkov, I.B., Bystrova, A.V., Kulichikin, V.G., and Muzafarov, A.M., J. Mol. Liq., 2019, vol. 286, p. 110852. https://doi.org/10.1016/j.molliq.2019.04.129

    Article  CAS  Google Scholar 

  34. Flory, P.J., J. Am. Chem. Soc., 1952, vol. 74, p. 2718. https://doi.org/10.1021/ja01131a008

    Article  CAS  Google Scholar 

  35. Muzafarov, A.M., Rebrov, E.A., and Papkov, V.S., Russ. Chem. Rev., 1991, vol. 60, no. 7, pp. 1596–1612. https://doi.org/10.1070/RC1991v060n07ABEH001112

    Article  CAS  Google Scholar 

  36. Ren, J.M., McKenzie, T.G., Fu, Q., Wong, E.H.H., Xu, J., An, Z., Shanmugam, S., Davis, T.P., Boyer, C., and Qiao, G.G., Chem. Rev., 2016, vol. 116, no. 12, pp. 6743–6836. https://doi.org/10.1021/acs.chemrev.6b00008

    Article  CAS  PubMed  Google Scholar 

  37. Andrianov, K.A., Pavlova, S.A., Tverdokhlebova, I.I., and Zavin, B.G., Vysokomol. Soed. Ser. B, 1968, vol. 10, no. 1, pp. 16–18.

    CAS  Google Scholar 

  38. de Gennes, P.G., Macromolecules, 1980, vol. 13, no. 5, p. 1069. https://doi.org/10.1021/ma60077a009

    Article  CAS  Google Scholar 

  39. Stiakakis, E., Vlassopoulos, D., and Roovers, J., Langmuir, 2003, vol. 19, no. 17, pp. 6645–6649. https://doi.org/10.1021/la034223p

    Article  CAS  Google Scholar 

  40. Heise, A., Hedrick, J., Trollsas, M., Miller, R., and Frank, C., Macromolecules, 1999, vol. 32, no. 1, p. 231. https://doi.org/10.1021/MA980924V

    Article  CAS  Google Scholar 

  41. Chu, C.-C., Wang, L., and Ho, T.-I., Macromol. Rapid Commun., 2005, vol. 26, no. 14, pp. 1179–1184. https://doi.org/10.1002/marc.200500192

    Article  CAS  Google Scholar 

  42. Angot, S., Murthy, K., Taton, D., and Gnanou, Y., Macromolecules, 1998, vol. 31, no. 21, pp. 7218–7225. https://doi.org/10.1021/MA980712Y

    Article  CAS  Google Scholar 

  43. Vlassopoulos, D., Pakula, T., and Roovers, J., Condens. Matter Phys., 2002, vol. 5, no. 1(29), pp. 105–116. https://doi.org/10.5488/cmp.5.1.105

  44. Jiang, G., Wang, L., and Chen, W., Eur. Polym. J., 2006, vol. 42, no. 12, pp. 3333–3340. https://doi.org/10.1016/j.eurpolymj.2006.08.024

    Article  CAS  Google Scholar 

  45. Roovers, J., Zhou, L.L., Toporowski, P.M., van der Zwan, M., Iatrou, H., and Hadjichristidis, N., Macromolecules, 1993, vol. 26, no. 16, p. 4324. https://doi.org/10.1021/ma00068a039

    Article  CAS  Google Scholar 

  46. Knischka, R., Lutz, P.J., Sunder, A., Mulhaupt, R., and Frey, H., Macromolecules, 2000, vol. 33, no. 2, pp. 315–320. https://doi.org/10.1021/ma991192p

    Article  CAS  Google Scholar 

  47. Terashima, T., Ouchi, M., Ando, T., Kamigaito, M., and Sawamoto, M., Macromolecules, 2007, vol. 40, pp. 3581–3588. https://doi.org/10.1021/ma062446r

    Article  CAS  Google Scholar 

  48. Comanita, B., Noren, B., and Roovers, J., Macromolecules, 1999, vol. 32, no. 4, pp. 1069–1072. https://doi.org/10.1021/ma981201e

    Article  CAS  Google Scholar 

  49. Marsalko, T.M., Majoros, I., and Kennedy, J.P., Macromol. Symp., 1995, vol. 95, no. 1, pp. 39–56. https://doi.org/10.1002/masy.19950950106

    Article  CAS  Google Scholar 

  50. Storey, R.F. and Shoemake, K.A., J. Polym. Sci. A, 1998, vol. 36, pp. 471–483. https://doi.org/10.1002/(SICI)1099-0518(199802)36:3<471::AID-POLA11>3.0.CO;2-K

    Article  CAS  Google Scholar 

  51. Bi, L.-K. and Fetters, L.J., Macromolecules, 1976, vol. 9, no. 5, pp. 732–742. https://doi.org/10.1021/ma60053a010

    Article  Google Scholar 

  52. Gao, H. and Matyjaszewski, K., J. Am. Chem. Soc., 2007, vol. 129, no. 38, pp. 11828–11834. https://doi.org/10.1021/ja073690g

    Article  CAS  PubMed  Google Scholar 

  53. Junnila, S., Houbenov, N., Hanski, S., Iatrou, H., Hirao, A., Hadjichristidis, N., and Ikkala, O., Macromolecules, 2010, vol. 43, no. 21, pp. 9071–9076. https://doi.org/10.1021/ma101990e

    Article  CAS  Google Scholar 

  54. Li, X.J., Qian, Y.F., Liu, T., Hu, X.L., Zhang, G.Y., You, Y.Z., and Liu, S.Y., Biomaterials, 2011, vol. 32, no. 27, pp. 6595–6605. https://doi.org/10.1016/j.biomaterials.2011.05.049

    Article  CAS  PubMed  Google Scholar 

  55. Boyce, J.R., Shirvanyants, D., Sheiko, S.S., Ivanov, D.A., Qin, S., Borner, H., and Matyjaszewski, K., Langmuir, 2004, vol. 20, no. 14, pp. 6005–6011. https://doi.org/10.1021/la049852t

    Article  CAS  PubMed  Google Scholar 

  56. Chen, Y., Shen, Z., Pastor-Pe?rez, L., Frey, H., and Stiriba, S.-E., Macromolecules, 2005, vol. 38, no. 2, pp. 227–229. https://doi.org/10.1021/ma047837p

    Article  CAS  Google Scholar 

  57. Slagt, M.Q., Stiriba, S.E., Kautz, H., Klein, Geb-bink, R.J., Frey, H., and van Koten, G., Organometallics, 2004, vol. 23, no. 7, pp. 1525–1532. https://doi.org/10.1021/om030603u

    Article  CAS  Google Scholar 

  58. Xu, H., Xu, J., Zhu, Z., Liu, H., and Liu, S., Macromolecules, 2006, vol. 39, no. 24, pp. 8451–8455. htps://doi.org/https://doi.org/10.1021/ma061584d

  59. Wang, X., Hall, J.E., Warren, S., Krom, J., Magistrelli, J.M., Rackaitis, M., and Bohm, G.G.A., Macromolecules, 2007, vol. 40, no. 3, p. 499–508. https://doi.org/10.1021/ma0613739

    Article  CAS  Google Scholar 

  60. Vasilenko, N.G., Getmanova, E.V., Myakushev, V.D., Rebrov, E.A., Möller, M., and Muzafarov, A.M., Vysokomol. Soed., Ser. A, 1997, vol. 39. No. 9, pp. 1449–1455.

    CAS  Google Scholar 

  61. Worsfold, D.J., Zilliox, J.G., and Rempp, P., Can. J. Chem., 1969, vol. 47, no. 18, pp. 3379–3385. ISSN:0008-4042 https://doi.org/10.1139/v69-560

  62. Kohler, A., Zilliox, J.G., Rempp, P., Polacek, J., and Koessler, T., Eur. Polym. J., 1972, vol. 8, no. 4, pp. 627–639. https://doi.org/10.1016/0014-3057(72)90138-3

    Article  CAS  Google Scholar 

  63. Bi, L.-K. and Fetters, L.J., Macromolecules, 1975, vol. 8, no. 1, pp. 90–92. https://doi.org/10.1021/ma60043a026

    Article  Google Scholar 

  64. Tsukahara, Y., Mizuno, K., Segawa, A., and Yamashita, Y., Macromolecules, 1989, vol. 22, no. 4, pp. 1546–1552. https://doi.org/10.1021/ma00194a007

    Article  CAS  Google Scholar 

  65. Hatada, K., Kitayama, T., Fujimoto, N., Fukuoka, T., Nakagava, O., and Nishura, T., J. Macromol. Sci., 2002, vol. 39, no. 8, pp. 801–814. https://doi.org/10.1081/MA-120005801

    Article  Google Scholar 

  66. Marsalko, T.M., Majoros, I., and Kennedy, J.P., Polym. Prepr., 1996, vol. 37, no. 1, p. 581. ISSN:0032-3934.

  67. Xia, J., Zhang, X., and Matyjaszewski, K., Macromolecules, 1999, vol. 32, no. 13, pp. 4482–4484. https://doi.org/10.1021/ma9900378

    Article  CAS  Google Scholar 

  68. Zhang, X., Xia, J., and Matyjaszewski, K., Macromolecules, 2000, vol. 33, no. 7, pp. 2340–2345. https://doi.org/10.1021/ma991076m

    Article  CAS  Google Scholar 

  69. Gao, H., Ohno, S., and Matyjaszewski, K., J. Am. Chem. Soc., 2006, vol. 128, no. 47, pp. 15111–15113. https://doi.org/10.1021/ja066964t

    Article  CAS  PubMed  Google Scholar 

  70. Mai, Y., Zhou, Y., and Yan, D., Macromolecules, 2005, vol. 38, no. 21, pp. 8679–8686. https://doi.org/10.1021/ma051377y

    Article  CAS  Google Scholar 

  71. Zgonnik, V.N., Bykova, E.N., Melenevskaya, E.Yu., Khachaturov, A.S., Kipper, A.I., Vinogradova, L.V., Terent’eva, N.V., Novoselova, A.V., Kever, E.E., Litvinova, L.S., and Klenin, S.I., Vysokomol. Soed., Ser. A, 1996, vol. 38, no. 6, p. 964.

    CAS  Google Scholar 

  72. Ederle, Y. and Mathis, C., Macromolecules, 1997, vol. 30, no. 9, pp. 2546–2555. https://doi.org/10.1021/ma961671d

    Article  CAS  Google Scholar 

  73. Lepoittevin, B., Matmour, R., Francis, R., Taton, D., and Gnanou, Y., Macromolecules, 2005, vol. 38, no. 8, pp. 3120–3128. https://doi.org/10.1021/ma048106s

    Article  CAS  Google Scholar 

  74. Eschwey, H., Hallensleben, M.L., and Burchard, W., Makromol. Chem., 1973, vol. 173, pp. 235–239. https://doi.org/10.1002/macp.1973.021730117

    Article  CAS  Google Scholar 

  75. Burchard, W. and Eschwey, H., Polymer, 1975, vol. 16, no. 3, pp. 180–184. https://doi.org/10.1016/0032-3861(75)90050-6

    Article  Google Scholar 

  76. Rempp, P. and Lutz, P., Polym. Prepr. Am. Chem. Soc., Div. Polym. Chem., 1988, vol. 29, no. 2, pp. 15–16. ISSN:0032-3934

  77. Puskas, J.E. and Wilds, C.J., J. Polym. Sci. A: Polym. Chem., 1998, vol. 36, no. 1, pp. 82–92. https://doi.org/10.1002/(sici)1099-0518(19980115)36:1%3C85::aid-pola12%3E3.0.co;2-9

    Article  Google Scholar 

  78. Vasilenko, N.G., Rebrov, E.A., Muzafarov, A.M., Esswein, B., Striegel, B., and Möller, M., Macromol. Chem. Phys., 1998, vol. 199, no. 5, pp. 889–895. https://doi.org/10.1002/(SICI)1521-3935(19980501)199:5<889::AID-MACP889>3.0.CO;2-T

    Article  CAS  Google Scholar 

  79. Vinogradova, L.V., Melenevskaya, E.Yu., Kever, E.E., and Zgonnik, V.N., Vysokomol. Soed., Ser. A, 2000, vol. 42, no. 2, pp. 213–220.

    CAS  Google Scholar 

  80. Gatard, S., Nlate, S., Cloutet, E., Bravic, G., Blais, J.-C., and Astruc, D., Angew. Chem., Int. Ed. Engl., 2003, vol. 42, no. 4, pp. 452–456. https://doi.org/10.1002/anie.200390137

    Article  CAS  Google Scholar 

  81. Zhao, Y., Shuai, X., Chen, C., and Xi, F., Macromolecules, 2004, vol. 37, no. 24, pp. 8854–8862. https://doi.org/10.1021/ma048303r

    Article  CAS  Google Scholar 

  82. Chen, X. and Smid, J., Langmuir, 1996, vol. 12, no. 9, p. 2207. https://doi.org/10.1021/la950963p

    Article  CAS  Google Scholar 

  83. Yen, D.R. and Merril, E.W., Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem., 1997, vol. 38, no. 1, p. 531. ISSN:0032-3934

  84. Schappacher, M., Billaud, C., Paulo, C., and Deffieux, A., Macromol. Chem. Phys., 1999, vol. 200, no. 10, pp. 2377–2386. https://doi.org/10.1002/(SICI)1521-3935(19991001)200:10%3C2377::AID-MACP2377%3E3.0.CO;2-B

    Article  CAS  Google Scholar 

  85. Allgaier, J., Martin, K., Rader, H.J., and Mullen, K., Macromolecules, 1999, vol. 32, no. 10, pp. 3190–3194. https://doi.org/10.1021/ma981557q

    Article  CAS  Google Scholar 

  86. Papanagopoulos, D. and Lutz, P., Polymer, 1995, vol. 36, no. 19, pp. 3745–3752. https://doi.org/10.1016/0032-3861(95)93779-l

    Article  Google Scholar 

  87. Du, J. and Chen, Y., Macromolecules, 2004, vol. 37, no. 10, p. 3588. https://doi.org/10.1016/0032-3861(95)93779-l

    Article  CAS  Google Scholar 

  88. Gao, H. and Matyjaszewski, K., Macromolecules, 2006, vol. 39, no. 21, p. 7216. https://doi.org/10.1021/ma061702x

    Article  CAS  Google Scholar 

  89. Baumgaertel, A., Altuntas, E., and Schubert, U.S., J. Chromatogr. A, 2012, vol. 1240, pp. 1–20. https://doi.org/10.1016/j.chroma.2012.03.038

    Article  CAS  PubMed  Google Scholar 

  90. Burdyńska, J., Li, Y., Aggarwal, A.V., Höger, S., Sheiko, S.S., and Matyjaszewski, K., J. Am. Chem. Soc., 2014, vol. 136, no. 36, pp. 12762–12770. https://doi.org/10.1021/ja506780y

    Article  CAS  PubMed  Google Scholar 

  91. Liu, J., Burts, A.O., Li, Y.J., Zhukhovitskiy, A.V., Ottaviani, M.F., Turro, N.J., and Johnson, J.A., J. Am. Chem. Soc., 2012, vol. 134, no. 39, pp. 16337–16344. https://doi.org/10.1021/ja3067176

    Article  CAS  PubMed  Google Scholar 

  92. Fu, Q., Ren, J.M., Tan, S., Xu, J., and Qiao, G.G., Macromol. Rapid Commun., 2012, vol. 33, no. 24, pp. 2109–2114. https://doi.org/10.1002/marc.201200489

    Article  CAS  PubMed  Google Scholar 

  93. Hadjichristidis, N., Guyot, A., and Fetters, L.J., Macromolecules, 1978, vol. 11, no. 4, pp. 668–672. https://doi.org/10.1021/ma60064a010

    Article  CAS  Google Scholar 

  94. Roovers, J., Hadjichristidis, N., and Fetters, L.J., Macromolecules, 1983, vol. 16, no. 2, p. 214. https://doi.org/10.1021/ma00236a012

    Article  CAS  Google Scholar 

  95. Roovers, J. and Toporovski, P.M., Polym. Prepr., 1988, vol. 29, no. 2, pp. 13–14. ISSN:0032-3934

  96. Vasilenko, N.G., Ignat’eva, G.M., Myakushev, V.D., Rebrov, E.A., Meller, M., and Muzafarov, A.M., Dokl. Chem., 2001, vol. 377, part 1, pp. 348–352.

    Article  CAS  Google Scholar 

  97. Watzlawek, M., Loven, H., and Likos, C.N., J. Phys. Condens. Matter, 1998, vol. 10, no. 37, pp. 8189–8205. https://doi.org/10.1088/0953-8984/10/37/007

    Article  CAS  Google Scholar 

  98. Ito, K., Tomi, Y., and Kawaguchi, S., Macromolecules, 1992, vol. 25, no. 5, pp. 1534–1538. https://doi.org/10.1021/ma00031a027

    Article  CAS  Google Scholar 

  99. Kharchenko, S.B., Kannan, R.M., Cernohous, J.J., and Venkataramani, S., Macromolecules, 2003, vol. 36, no. 2, pp. 399–406. https://doi.org/10.1021/ma0256486

    Article  CAS  Google Scholar 

  100. Witten, T.A., Pincus, P.A., and Cates, M.E., Europhys. Lett., 1986, vol. 2, no. 2, pp. 137–140. https://doi.org/10.1209/0295-5075/2/2/011

    Article  CAS  Google Scholar 

  101. Kreutzer, G., Ternat, C., Nguyen, T.Q., Plummer, C.J.G., Manson, J.-A.E., Castelletto, V., Hamley, I.W., Sun, F., Sheiko, S.S., Herrmann, A., Ouali, L., Sommer, H., Fieber, W., Velazco, M.I., and Klok, H.-A., Macromolecules, 2006, vol. 39, pp. 4507–4516. https://doi.org/10.1021/ma060548b

    Article  CAS  Google Scholar 

  102. Pang, X., Zhao, L., Feng, C., and Lin, Z., Macromolecules, 2011, vol. 44, no. 18, pp. 7176–7183. https://doi.org/10.1021/ma201564t

    Article  CAS  Google Scholar 

  103. Polyakov, D.K., Ignat’eva, G.M, Rebrov, E.A., Vasilenko, N.G., Sheiko, S.S., Moller, M., and Muzafarov, A.M., Vysokomol. Soed. Ser. A, 1998, vol. 40, no. 9, pp. 1421–1429.

    CAS  Google Scholar 

  104. Averbukh, M.Z., Nikanorova, N.I., Rozinoer, Ya.M., Lushchikov, N.I., Shatalov, V.P., Gurari, M.L., Bakeev, N.F., and Kozlov, P.V., Kolloid. Zh., 1976, vol. 38, no. 3, pp. 419–424. ISSN:0023-2912

  105. Beyer, F.L., Gido, S.P., Poulos, Y., Avgeropoulos, A., and Hadjichristidis, N., Macromolecules, 1997, vol. 30, no. 8, pp. 2373–2376. https://doi.org/10.1021/MA961855S

    Article  CAS  Google Scholar 

  106. Inoue, T., Soen, T., Hashimoto, T., and Kawai, H., J. Polym. Sci. Part V, 1969, vol. 7, no. 8, pp. 1283–1301. https://doi.org/10.1002/pol.1969.160070801

    Article  CAS  Google Scholar 

  107. Daoud, M. and Cotton, J.P., J. Phys. Fr., 1982, vol. 43, no. 3, pp. 531–538. https://doi.org/10.1051/jphys:01982004303053100

    Article  CAS  Google Scholar 

  108. Grest, G.S., Kremer, K., and Wittent, T.A., Macromolecules, 1987, vol. 20, no. 6, pp. 1376–1383. https://doi.org/10.1021/ma00172a035

  109. Roovers, J., Macromolecules, 1994, vol. 27, no. 19, pp. 5359–5364. https://doi.org/10.1021/ma00097a015

    Article  CAS  Google Scholar 

  110. Novozhilov, O.V., Candidate Dissertation in Chemistry, Moscow, 2011. https://old.ispm.ru/Avtoreferat_Novogilov.pdf. Link active on Dec. 28, 2020.

  111. Vlassopoulos, D., Fytas, G., Pakula, T., and Roovers, J., J. Phys.: Condens. Matter, 2001, vol. 13, no. 41, pp. R855–R876. https://doi.org/10.1088/0953-8984/13/41/202

    Article  CAS  Google Scholar 

  112. Pakula, T., Vlassopulos, D., Fytas, G., and Roovers, J., Macromolecules, 1998, vol. 31, no. 25, pp. 8931–8940. https://doi.org/10.1021/ma981043r

    Article  CAS  Google Scholar 

  113. Vigild, M.E., Almdal, K., Mortensen, K., Hamley, I.W., Fairclough, J.P.A., and Ryan, A.J., Macromolecules, 1998, vol. 31, no. 17, pp. 5702–5716. https://doi.org/10.1021/ma9716746

    Article  CAS  Google Scholar 

  114. Miros, A., Vlassopoulos, D., Likhtman, A.E., and Roovers, J., J. Rheol., 2003, vol. 47, no. 1, pp. 163–176. https://doi.org/10.1122/1.1529172

    Article  CAS  Google Scholar 

  115. Vlassopoulos, D., Pakula, T., and Roovers, J., Condens. Matter Phys., 2002, vol. 5, no. 29, pp. 105–116. https://doi.org/10.5488/CMP.5.1.105

    Article  Google Scholar 

  116. Loppinet, B., Stiakakis, E., Vlassopoulos, D., Fytas, G., and Roovers, J., Macromolecules, 2001, vol. 34, no. 23, pp. 8216–8223. https://doi.org/10.1021/ma010788l

    Article  CAS  Google Scholar 

  117. Juliani, A.L.A., Macromolecules, 2002, vol. 35, no. 27, p. 10048–10053. https://doi.org/10.1021/ma0208436

    Article  CAS  Google Scholar 

  118. Ishuzu, K., Sunahara, K., Ichimura, A., and Asai, S.-I., Polym. Plast. Technol. Eng., 1998, vol. 37, no. 4, pp. 527–538. https://doi.org/10.1080/03602559808001378

    Article  Google Scholar 

  119. Snijkers, F., Cho, H.Y., Nese, A., Matyjaszewski, K., Pyckhout-Hintzen, W., and Vlassopoulos, D., Macromolecules, 2014, vol. 47, no. 15, pp. 5347–5356. https://doi.org/10.1021/ma5008336

    Article  CAS  Google Scholar 

  120. Goh, T.K., Coventry, K.D., Blencowe, A., and Qiao, G.G., Polymer, 2008, vol. 49, no. 23, pp. 5095–5104. https://doi.org/10.1016/j.polymer.2008.09.030

    Article  CAS  Google Scholar 

  121. Choi, Y.K., Bae, Y.H., and Kim, S.W., Macromolecules, 1998, vol. 31, no. 25, pp. 8766–8774. https://doi.org/10.1021/MA981069I

  122. Zhao, Y.-L., Cai, Q., Jiang, J., Shuai, X.-T., Bei, J.-Z., Chen, C.-F., and Xi, F., Polymer, 2002, vol. 43, no. 22, pp. 5819–5825. https://doi.org/10.1016/S0032-3861(02)00529-3

    Article  CAS  Google Scholar 

  123. Njikang, G.N., Cao, L., and Gauthier, M., Macromol. Chem. Phys., 2008, vol. 209, no. 9, pp. 907–918. https://doi.org/10.1002/macp.200700619

    Article  CAS  Google Scholar 

  124. Yuan, W., Liu, X., Zou, H., Li, J., Yuan, H., and Ren, J., Macromol. Chem. Phys., 2013, vol. 214, no. 14, pp. 1580–1589. https://doi.org/10.1002/macp.201300201

    Article  CAS  Google Scholar 

  125. Novozhilov, O.V., Pavlichenko, I.V., Demchenko, N.V., Buzin, A.I., Vasilenko, N.G., and Muzafarov, A.M., Russ. Chem. Bull., 2010, vol. 59, no. 10, pp. 1859–1867. https://doi.org/10.1007/s11172-010-0332-8

    Article  CAS  Google Scholar 

  126. Tikhonov, P.A., Vasilenko, N.G., Cherkaev, G.V., Vasil’ev, V.G., Demchenko, N.V., Tatarinova, E.A., and Muzafarov, A.M., Mendeleev Commun., 2019, vol. 29, no. 6, pp. 625–627. https://doi.org/10.1016/j.mencom.2019.11.006

    Article  CAS  Google Scholar 

  127. Oligoorganosiloksany. Svoistva, poluchenie, primenenie (Oligoorganosiloxanes. Properties, Synthesis, Application), Sobolevskii, M.V., Ed., Moscow: Khimiya, 1985.

    Google Scholar 

  128. Vasilenko, N.G., Chernikova, E.F., Myakushev, V.D., Moeller, M., and Muzafarov, A.M., Dokl. Phys. Chem., 2003, vol. 388, part 2, pp. 48–52. https://doi.org/10.1023/A:1022539415309

  129. Novozhilov, O.V., Vasilenko, N.G., Buzin, M.I., Shcherbina, M.A., Chvalun, C.N., and Muzafarov, A.M., Russ. Chem. Bull., 2011, vol. 60, no. 5, pp. 1019–1021. https://doi.org/10.1007/s11172-011-0160-5

    Article  CAS  Google Scholar 

  130. Buzin, A.I., Vasilenko, N.G., Chernikova, E.A., Mourran, A., Möller, M., and Muzafarov, A.M., Vysokomol. Soed. Ser. A, 2004, vol. 46, no. 9, pp. 1461–1470.

    CAS  Google Scholar 

  131. Vysochinskaya, Yu.S., Gorodov, V.V., Anisimov, A.A., Boldyrev, K.L., Buzin, M.I., Naumkin, A.V., Maslakov, K.I., Peregrudov, A.S., Shchegolikhina, O.I., and Muzafarov, A.M., Russ. Chem. Bull., 2017, vol. 66, no. 6, pp. 1094–1098. https://doi.org/10.1007/s11172-017-1859-8

  132. Vysochinskaya, Y.S., Anisimov, A.A., Peregudov, A.S., Dubovik, A.S., Orlov, V.N., Malakhova, Y.N., Stupnikov, A.A., Buzin, M.I., Nikiforova, G.G., Vasil’ev, V.G., Shchegolikhina, O.I., and Muzafarov, A.M., J. Polym. Sci. A, 2019, vol. 57, no. 11, pp. 1233–1246. https://doi.org/10.1002/pola.29380

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Studies of molecular weight distribution, recording NMR spectra, and microscopic and thermal studies were carried out with the support of the Ministry of Science and Higher Education of the Russian Federation using scientific equipment of the Shared Facility Center “Center for Polymer Research” ISPM RAS.

Funding

This work was supported by the Russian Science Foundation (project no. 18-13-00411).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Muzafarov.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonov, P.A., Vasilenko, N.G. & Muzafarov, A.M. Multiarm Star Polymers. Fundamental Aspects. A Review. Dokl Chem 496, 1–17 (2021). https://doi.org/10.1134/S001250082101002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001250082101002X

Keywords:

Navigation