Skip to main content
Log in

High-Order Grid-Characteristic Method for Systems of Hyperbolic Equations with Piecewise Constant Coefficients

  • NUMERICAL METHODS
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

A new approach is considered for increasing the order of accuracy of the grid-characteristic method in the region of coefficient jumps. The approach is based on piecewise polynomial interpolation for schemes of the second and third orders of accuracy for the case where the interface between the media is consistent with a finite-difference grid. The method is intended for numerical simulation of the propagation of dynamic wave disturbances in heterogeneous media. Systems of hyperbolic equations with variable coefficients are used to describe the considered physical processes. The description of the numerical method and the results of its testing are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. LeVeque, R.J., Finite Volume Methods for Hyperbolic Problems, Cambridge: Cambridge Univ. Press, 2002.

  2. Brekhovskikh, L.M. and Godin, O.A., Acoustics of Layered Media I , Berlin–Heidelberg–Dordrecht: Springer-Verlag, 1990.

    Book  Google Scholar 

  3. Moczo, P., Kristek, J., and Galis, M., The Finite-Difference Modelling of Earthquake Motions: Waves and Ruptures, Cambridge: Cambridge Univ. Press, 2014.

    Book  MATH  Google Scholar 

  4. Li, Z. and Ito, K., The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains, Philadelphia: SIAM, 2006.

    Book  MATH  Google Scholar 

  5. Xu, J., Estimate of the convergence rate of finite element solutions to elliptic equations of second order with discontinuous coefficients, 2013. .

  6. Adjerid, S., Ben-Romdhane, M., and Lin, T., Higher degree immersed finite element methods for second-order elliptic interface problems, Int. J. Numer. Anal. & Model., 2014, vol. 11, no. 3, pp. 541–566.

    MathSciNet  MATH  Google Scholar 

  7. He, X., Lin, T., Lin, Y., and Zhang, X., Immersed finite element methods for parabolic equations with moving interface, Numer. Methods Partial Differ. Equat., 2013, vol. 29, no. 2, pp. 619–646.

    Article  MathSciNet  MATH  Google Scholar 

  8. Tong, F., Wang, W., Feng, X., Zhao, J., and Li, Z., How to obtain an accurate gradient for interface problems?, J. Comput. Phys., 2020, vol. 405, p. 109070.

    Article  MathSciNet  MATH  Google Scholar 

  9. Lisitsa, V., Podgornova, O., and Tcheverda, V., On the interface error analysis for finite difference wave simulation, Comput. Geosci., 2010, vol. 14, no. 4, pp. 769–778.

    Article  MATH  Google Scholar 

  10. Kaser, M. and Dumbser, M., An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes-I. The two-dimensional isotropic case with external source terms, Geophys. J. Int., 2006, vol. 166, no. 2, pp. 855–877.

    Article  Google Scholar 

  11. Wilcox, L., Stadler, G., Burstedde, C., and Ghattas, O., A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media, J. Comput. Phys., 2010, vol. 229, no. 24, pp. 9373–9396.

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, C. and LeVeque, R.J., The immersed interface method for acoustic wave equations with discontinuous coefficients, Wave Motion, 1997, vol. 25, no. 3, pp. 237–263.

    Article  MathSciNet  MATH  Google Scholar 

  13. Tikhonov, A.N. and Samarskii, A.A., Homogeneous difference schemes, Zh. Vychisl. Mat. Mat. Fiz., 1961, vol. 1, no. 1, pp. 5–67.

    MathSciNet  MATH  Google Scholar 

  14. Piraux, J. and Lombard, B., A new interface method for hyperbolic problems with discontinuous coefficients: One-dimensional acoustic example, J. Comput. Phys., 2001, vol. 168, no. 1, pp. 227–248.

    Article  MathSciNet  MATH  Google Scholar 

  15. Lombard, B. and Piraux, J., Numerical treatment of two-dimensional interfaces for acoustic and elastic waves, J. Comput. Phys., 2004, vol. 195, no. 1, pp. 90–116.

    Article  MathSciNet  MATH  Google Scholar 

  16. Chiavassa, G. and Lombard, B., Time domain numerical modeling of wave propagation in 2D heterogeneous porous media, J. Comput. Phys., 2011, vol. 230, no. 13, pp. 5288–5309.

    Article  MathSciNet  MATH  Google Scholar 

  17. Abraham, D.S., Marques, A.N., and Nave, J.C., A correction function method for the wave equation with interface jump conditions, J. Comput. Phys., 2018, vol. 353, pp. 281–299.

    Article  MathSciNet  MATH  Google Scholar 

  18. Golubev, V., Shevchenko, A., Khokhlov, N., Petrov, I., and Malovichko, M., Compact grid-characteristic scheme for the acoustic system with the piecewise constant coefficients, Int. J. Appl. Mech., 2022, vol. 14, no. 2, p. 2250002.

    Article  Google Scholar 

  19. Khokhlov, N.I. and Petrov, I.B., On one class of high-order compact grid-characteristic schemes for linear advection, Russ. J. Numer. Anal. Math. Model., 2016, vol. 31, no. 6, pp. 355–368.

    Article  MathSciNet  MATH  Google Scholar 

  20. Favorskaya, A.V., Zhdanov, M.S., Khokhlov, N.I., and Petrov, I.B., Modelling the wave phenomena in acoustic and elastic media with sharp variations of physical properties using the grid-characteristic method, Geophys. Prospect., 2018, vol. 66, no. 8, pp. 1485–1502.

    Article  Google Scholar 

  21. Ito, K. and Takeuchi, T., Immersed interface CIP for one dimensional hyperbolic equations, Commun. Comput. Phys., 2014, vol. 16, no. 1, pp. 96–114.

    Article  MathSciNet  MATH  Google Scholar 

  22. Stognii, P.V., Khokhlov, N.I., and Petrov, I.B., The numerical solution of the problem of the contact interaction in models with gas pockets, J. Phys. Conf. Ser., 2021, vol. 1715, no. 1, p. 012058.

    Article  Google Scholar 

  23. Golubev, V.I., Khokhlov, N.I., Nikitin, I.S., and Churyakov, M.A., Application of compact grid-characteristic schemes for acoustic problems, J. Phys. Conf. Ser., 2020, vol. 1479, no. 1, p. 012058.

    Article  Google Scholar 

  24. Khokhlov, N.I., Favorskaya, A., and Furgailo, V., Grid-characteristic method on overlapping curvilinear meshes for modeling elastic waves scattering on geological fractures, Minerals, 2022, vol. 12, no. 12, p. 1597.

    Article  Google Scholar 

  25. Khokhlov, N., Favorskaya, A., Mitkovets, I., and Stetsyuk, V., Grid-characteristic method using Chimera meshes for simulation of elastic waves scattering on geological fractured zones, J. Comput. Phys., 2021, vol. 446, p. 110637.

    Article  MathSciNet  MATH  Google Scholar 

  26. Kozhemyachenko, A.A., Petrov, I.B., Favorskaya, A.V., and Khokhlov, N.I., Boundary conditions for modeling the impact of wheels on railway track, Comput. Math. Math. Phys., 2020, vol. 60, no. 9, pp. 1539–1554.

    Article  MathSciNet  MATH  Google Scholar 

  27. Favorskaya, A.V., Khokhlov, N.I., and Petrov, I.B., Grid-characteristic method on joint structured regular and curved grids for modeling coupled elastic and acoustic wave phenomena in objects of complex shape, Lobachevskii J. Math., 2020, vol. 41, no. 4, pp. 512–525.

    Article  MathSciNet  MATH  Google Scholar 

  28. Kholodov, Y.A., Kholodov, A.S., and Tsybulin, I.V., Construction of monotone difference schemes for systems of hyperbolic equations, Comput. Math. Math. Phys., 2018, vol. 58, no. 8, pp. 1226–1246.

    Article  MathSciNet  MATH  Google Scholar 

  29. Courant, R., Isaacson, E., and Rees, M., On the solution of nonlinear hyperbolic differential equations by finite differences, Commun. Pure Appl. Math., 1952, vol. 5, no. 3, pp. 243–255.

    Article  MathSciNet  MATH  Google Scholar 

  30. Lax, P. and Wendroff, B., Systems of conservation laws, Commun. Pure Appl. Math., 1960, vol. 13, no. 2, pp. 217–237.

    Article  MATH  Google Scholar 

  31. Rusanov, V.V., Difference schemes of the third order of accuracy for direct calculation of discontinuous solutions, Dokl. Akad. Nauk SSSR, 1968, vol. 180, no. 6, pp. 1303–1305.

    MathSciNet  Google Scholar 

  32. Kholodov, A.S. and Kholodov, Ya.A., Monotonicity criteria for difference schemes designed for hyperbolic equations, Comput. Math. Math. Phys., 2006, vol. 46, no. 9, pp. 1560–1588.

    Article  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Yu.I. Skal’ko for useful consultations on the work.

Funding

This work was financially supported by the Russian Science Foundation, project 21-11-00139, https://rscf.ru/en/project/21-11-00139/.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. I. Khokhlov or I. B. Petrov.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khokhlov, N.I., Petrov, I.B. High-Order Grid-Characteristic Method for Systems of Hyperbolic Equations with Piecewise Constant Coefficients. Diff Equat 59, 985–997 (2023). https://doi.org/10.1134/S001226612307011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001226612307011X

Navigation