Skip to main content
Log in

Problem of Determining the Reaction Coefficient in a Fractional Diffusion Equation

  • INTEGRAL AND INTEGRO-DIFFERENTIAL EQUATIONS
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

For a fractional diffusion equation with reaction coefficient depending only on the first two components of the spatial variable \(x=(x_1,x_2,x_3)\in \mathbb {R}^3 \) and on time \(t\geq 0 \), we consider the inverse problem of determining this coefficient under the assumption that the initial value at \(t=0 \) is known for the solution of the equation and the boundary value at \( x_3=0\) is given as an additional condition. This inverse problem is reduced to equivalent integral equations, and we apply the contraction mapping principle to prove the existence of solutions of these equations. Local existence and global uniqueness theorems are proved. We also obtain a stability estimate for the solution of the inverse problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Caputo, M. and Mainardi, F., Linear models of dissipation in an elastic solid, La Rivista del Nuovo Cimento, 1971, vol. 1, no. 2, pp. 161–198.

    Article  Google Scholar 

  2. Babenko, Yu.I., Teplomassoobmen. Metod rascheta teplovykh i diffuzionnykh potokov (Heat and Mass Transfer. Method for Calculating Heat and Diffusion Fluxes), Leningrad: Khimiya, 1986.

    Google Scholar 

  3. Gorenflo, R. and Mainardi, F., Fractional calculus: integral and differential equations of fractional order, in Fractals Fractional Calculus in Continuum Mechanics, Carpinteri, A. and Mainar, F., Eds., New York: Springer, 1997, pp. 223–276.

  4. Gorenflo, R. and Rutman, R., On ultraslow and intermediate processes, in Transform Methods and Special Functions, Rusev, P., Dimovski, I., and Kiryakova, V., Eds., Sofia, 1994. Sci. Culture Technol. Singapore, 1995, pp. 61–81.

  5. Mainardi, F., Fractional relaxation and fractional diffusion equations, mathematical aspects, in Proc. 12th IMACS World Congr., Ames, W.F., Ed., Georgia Tech Atlanta, 1994, vol. 1, pp. 329–332.

  6. Mainardi, F., Fractional calculus: some basic problems in continuum and statistical mechanics, in Fractals and Fractional Calculus in Continuum Mechanics, Carpinteri, A. and Mainar, F., Eds., New York: Springer, 1997, pp. 291–348.

  7. Kochubei, A.N., The Cauchy problem for fractional-order evolution equations, Differ. Uravn., 1986, vol. 25, no. 8, pp. 1359–1368.

    Google Scholar 

  8. Kochubei, A.N., Diffusion of fractional order, Differ. Uravn., 1990, vol. 26, no. 4, pp. 485–492.

    MathSciNet  MATH  Google Scholar 

  9. Eidelman, S.D. and Kochubei, A.N., Cauchy problem for fractional diffusion equations, J. Differ. Equat., 2004, vol. 199, pp. 211–255.

    Article  MathSciNet  Google Scholar 

  10. Miller, L. and Yamamoto, M., Coefficient inverse problem for a fractional diffusion equation, Inverse Probl., 2013, vol. 29, no. 7, p. 075013.

    Article  MathSciNet  Google Scholar 

  11. Bondarenko, A.N. and Ivaschenko, D.S., Numerical methods for solving inverse problems for time fractional diffusion equation with variable coefficient, J. Inverse Ill-Posed Probl., 2009, vol. 17, pp. 419–440.

    MathSciNet  MATH  Google Scholar 

  12. Xiong, T.X., Zhou, Q., and Hon, C.Y., An inverse problem for fractional diffusion equation in 2-dimensional case: stability analysis and regularization, J. Math. Anal. Appl., 2012, vol. 393, pp. 185–199.

    Article  MathSciNet  Google Scholar 

  13. Xiong, X., Guo, H., and Liu, X., An inverse problem for a fractional diffusion equation, J. Comput. Appl. Math., 2012, vol. 236, pp. 4474–4484.

    Article  MathSciNet  Google Scholar 

  14. Kirane, M., Malik, S.A., and Al-Gwaiz, M.A., An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary conditions, Math. Meth. Appl. Sci., 2013, vol. 36, pp. 1056–1069.

    Article  MathSciNet  Google Scholar 

  15. Romanov, V.G., An inverse problem for a layered film on a substrate, Eurasian J. Math. Comput. Appl., 2016, vol. 4, no. 3, pp. 29–38.

    MathSciNet  Google Scholar 

  16. Karuppiah, K., Kim, J.K., and Balachandran, K., Parameter identification of an integro-differential equation, Nonlin. Func. Anal. Appl., 2015, vol. 20, no. 2, pp. 169–185.

    MATH  Google Scholar 

  17. Ivanchov, M. and Vlasov, V., Inverse problem for a two dimensional strongly degenerate heat equation, Electronic J. Differ. Equat., 2018, vol. 77, pp. 1–17.

    MathSciNet  MATH  Google Scholar 

  18. Huntul, M.J., Lesnic, D., and Hussein, M.S., Reconstruction of time-dependent coefficients from heat moments, Appl. Math. Comput., 2017, vol. 301, pp. 233–253.

    MathSciNet  MATH  Google Scholar 

  19. Hazanee, A., Lesnic, D., Ismailov, M.I., and Kerimov, N.B., Inverse time-dependent source problems for the heat equation with nonlocal boundary conditions, Appl. Math. Comput., 2019, vol. 346, pp. 800–815.

    MathSciNet  MATH  Google Scholar 

  20. Durdiev, D.K. and Rashidov, A.Sh., Inverse problem of determining the kernel in an integro-differential equation of parabolic type, Differ. Equations, 2014, vol. 50, no. 1, pp. 110–116.

    Article  MathSciNet  Google Scholar 

  21. Durdiev, D.K. and Zhumaev, Zh.Zh., Problem of determining a multidimensional thermal memory in a heat conductivity equation, Methods Func. Anal. Topol., 2019, vol. 25, no. 3, pp. 219–226.

    MathSciNet  MATH  Google Scholar 

  22. Durdiev, D.K. and Zhumaev, Zh.Zh., Problem of determining the thermal memory of a conducting medium, Differ. Equations, 2020, vol. 56, no. 6, pp. 785–796.

    Article  MathSciNet  Google Scholar 

  23. Durdiev, D.K. and Nuriddinov, J.Z., On investigation of the inverse problem for a parabolic integrodifferential equation with a variable coefficient of thermal conductivity, Vestn. Udmurt. Univ. Mat. Mekh. Komp’yut. Nauki, 2020, vol. 30, no. 4, pp. 572–584.

    Article  Google Scholar 

  24. Durdiev, D.K., Shishkina, E.L., and Sitnik, S.M., The explicit formula for solution of anomalous diffusion equation in the multi-dimensional space, September 20, 2020.

  25. Ladyzhenskaya, O.A., Solonnikov, V.A., and Ural’tseva, N.N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa (Linear and Quasilinear Equations of Parabolic Type), Moscow: Nauka, 1967, p. 736.

    Google Scholar 

  26. Mathai, A.M., Saxena, R.K., and Haubold, H.J., The \(H\)-function. Theory and Application, Berlin–Heidelberg: Springer, 2010.

    MATH  Google Scholar 

  27. Kilbas, A.A., Srivastava, H.M., and Trujillo, J.J., Theory and Application of Fractional Differential Equations. North-Holland Mathematical Studies, Amsterdam: Elsevier, 2006.

    Google Scholar 

  28. Tikhonov, A.N. and Samarskii, A.A., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), Moscow: Nauka, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. D. Durdiev.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durdiev, U.D. Problem of Determining the Reaction Coefficient in a Fractional Diffusion Equation. Diff Equat 57, 1195–1204 (2021). https://doi.org/10.1134/S0012266121090081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266121090081

Navigation