Skip to main content
Log in

Estimates for the difference between exact and approximate solutions of parabolic equations on the basis of Poincaré inequalities for traces of functions on the boundary

  • Numerical Methods
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

We study a method for the derivation of majorants for the distance between the exact solution of an initial–boundary value reaction–convection–diffusion problem of the parabolic type and an arbitrary function in the corresponding energy class. We obtain an estimate (for the deviation from the exact solution) of a new type with the use of a maximally broad set of admissible fluxes. In the definition of this set, the requirement of pointwise continuity of normal components of the dual variable (which was a necessary condition in earlier-obtained estimates) is replaced by the requirement of continuity in the weak (integral) sense. This result can be achieved with the use of the domain decomposition and special embedding inequalities for functions with zero mean on part of the boundary or for functions with the zero mean over the entire domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Prager, W. and Synge, J.L., Approximation in Elasticity Based on the Concept of Function Space, Quart. Appl. Math., 1947, no. 5, pp. 241–269.

    MathSciNet  MATH  Google Scholar 

  2. Mikhlin, S.G., Variational Methods in Mathematical Physics, Oxford, 1964.

    MATH  Google Scholar 

  3. Repin, S., A Posteriori Error Estimation for Variational Problems with Power Growth Functionals Based on Duality Theory, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklova, 1997, vol. 249, pp. 244–255.

    Google Scholar 

  4. Repin, S., A Posteriori Error Estimation for Variational Problems with Uniformly Convex Functionals, Math. Comput., 2000, vol. 69, no. 230, pp. 481–500.

    Article  MathSciNet  MATH  Google Scholar 

  5. Repin, S.I., Two-Sided Estimates of Deviation from Exact Solutions of Uniformly Elliptic Equations, Proc. St. Petersburg Math. Soc., vol. 9: Amer. Math. Soc., Providence, RI., 2003, vol. 209, pp. 143–171.

    MathSciNet  MATH  Google Scholar 

  6. Repin, S., A Posteriori Estimates for Partial Differential Equations, Berlin, 2008.

    Book  MATH  Google Scholar 

  7. Mali, O., Neittaanmäki, P., and Repin, S., Accuracy Verification Methods, Dordrecht, 2014.

    Book  MATH  Google Scholar 

  8. Ladyzhenskaya, O.A., Kraevye zadachi matematicheskoi fiziki (Boundary Value Problems of Mathematical Physics), Moscow: Nauka, 1973.

    Google Scholar 

  9. Ladyzhenskaya, O.A., Solonnikov, V.A., and Ural’tseva, N.N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa (Linear and Quasi-Linear Equations of Parabolic Type), Moscow: Nauka, 1967.

    Google Scholar 

  10. Wloka, J., Partial Differential Equations, Cambridge, 1987.

    Book  MATH  Google Scholar 

  11. Zeidler, E., Nonlinear Functional Analysis and Its Applications II/A, New York, 1990.

    Book  MATH  Google Scholar 

  12. Repin, S., Estimates of Deviations from Exact Solutions of the Initial–Boundary Value Problem for the Heat Equation, Rend. Mat. Acc. Lincei., 2002, vol. 13, no. 9, pp. 121–133.

    MathSciNet  MATH  Google Scholar 

  13. Gaevskaya, A.V. and Repin, S., A Posteriori Error Estimates for Approximate Solutions of Linear Parabolic Problems, Differ. Equat., 2005, vol. 41, no. 7, pp. 970–983.

    Article  MathSciNet  MATH  Google Scholar 

  14. Matculevich, S. and Repin, S., Computable Estimates of the Distance to the Exact Solution of the Evolutionary Reaction-Diffusion Equation, Appl. Math. Comput., 2014, vol. 247, pp. 329–347.

    MathSciNet  MATH  Google Scholar 

  15. Repin, S. and Tomar, S.K., A Posteriori Error Estimates for Approximations of Evolutionary Convection- Diffusion Problems, J. Math. Sci. (N. Y.), 2010, vol. 170, no. 4, pp. 554–566.

    Article  MathSciNet  MATH  Google Scholar 

  16. Langer, U., Repin, S., and Wolfmayr, M., Functional a Posteriori Error Estimates for Parabolic Time- Periodic Boundary Value Problems, Comput. Methods Appl. Math., 2015, vol. 15, no. 3, pp. 353–372.

    Article  MathSciNet  MATH  Google Scholar 

  17. Verf¨urth, R., A Posteriori Error Estimates for Finite Element Discretizations of the Heat Equation, Calcolo, 2003, vol. 40, no. 3, pp. 195–212.

    Article  MathSciNet  Google Scholar 

  18. Bangerth, W. and Rannacher, R., Adaptive Finite Element Methods for Differential Equations, Basel, 2003.

    Book  MATH  Google Scholar 

  19. Makridakis, C. and Nochetto, R.H., Elliptic Reconstruction and a Posteriori Error Estimates for Parabolic Problems, SIAM J. Numer. Anal., 2003, vol. 41, no. 4, pp. 1585–1594.

    Article  MathSciNet  MATH  Google Scholar 

  20. Schmich, M. and Vexler, B., Adaptivity with Dynamic Meshes for Space-Time Finite Element Discretizations of Parabolic Equations, SIAM J. Sci. Comput., 2007/08, vol. 30, no. 1, pp. 369–393.

    Article  MathSciNet  MATH  Google Scholar 

  21. Matculevich, S., Neittaanmäki, P., and Repin, S., A Posteriori Error Estimates for Time-Dependent Reaction–Diffusion Problems Based on the Payne–Weinberger Inequality, Discrete Contin. Dyn. Syst., Ser. A. 2015, vol. 35, no. 6, pp. 2659–2677.

    Article  MathSciNet  MATH  Google Scholar 

  22. Matculevich, S. and Repin, S., Explicit Constants in Poincaré-Type Inequalities for Simplicial Domains, Comput. Methods Appl. Math., 2016, vol. 16, no. 2, pp. 277–298.

    Article  MathSciNet  MATH  Google Scholar 

  23. Repin, S. and Sauter, S., Functional a Posteriori Estimates for the Reaction–Diffusion Problem, C. R. Acad. Sci. Paris, 2006, vol. 343, no. 1, pp. 349–354.

    Article  MathSciNet  MATH  Google Scholar 

  24. Matculevich, S. and Repin, S., Computable Bounds of the Distance to the Exact Solution of Parabolic Problems Based on Poincaré Type Inequalities, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklova, 2014, vol. 425, no. 1, pp. 7–34.

    MATH  Google Scholar 

  25. Payne, L.E. and Weinberger, H.F., An Optimal Poincaré Inequality for Convex Domains, Arch. Ration. Mech. Anal., 1960, vol. 5, pp. 286–292.

    Article  MathSciNet  MATH  Google Scholar 

  26. Laugesen, R.S. and Siudeja, B.A., Minimizing Neumann Fundamental Tones of Triangles: an Optimal Poincaré Inequality, J. Differential Equations, 2010, vol. 249, no. 1, pp. 118–135.

    Article  MathSciNet  MATH  Google Scholar 

  27. Nazarov, A.I. and Repin, S., Exact Constants in Poincaré Type Inequalities for Functions with Zero Mean Boundary Traces, Math. Meth. Appl. Sci., 2014, vol. 38, no. 15, pp. 3195–3207.

    Article  MathSciNet  MATH  Google Scholar 

  28. Repin, S., Estimates of Constants in Boundary-Mean Trace Inequalities and Applications to Error Analysis, in Numerical Mathematics and Advanced Applications — ENUMATH 2013, Switzerland, Lecture Notes in Computational Science and Engineering, 2015, vol. 103, pp. 215–223.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Matculevich.

Additional information

Original Russian Text © S.V. Matculevich, S.I. Repin, 2016, published in Differentsial’nye Uravneniya, 2016, Vol. 52, No. 10, pp. 1407–1417.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matculevich, S.V., Repin, S.I. Estimates for the difference between exact and approximate solutions of parabolic equations on the basis of Poincaré inequalities for traces of functions on the boundary. Diff Equat 52, 1355–1365 (2016). https://doi.org/10.1134/S0012266116100116

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266116100116

Navigation