Skip to main content
Log in

Variability of Sea Level and Circulation in the North Atlantic Based on Satellite Altimetry Data

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

This paper discusses the relationship between interannual sea level fluctuations and the system of currents in the area of the North Atlantic Anticyclonic Water Gyre according to satellite altimetry (1993–2019). The initial data was the base of monthly average data on the sea level of the Copernicus reanalysis archive GLOBAL_REANALYSIS_PHY_001_030. A clearly expressed relationship between the annual discharges of the Florida Current and the level gradient in the section of 25° latitude between 80°–78° W was revealed (r = 0.79). Calculation of interannual sea-level changes on the latitudinal section 26° for its individual sections and across the entire North Atlantic within 80°–15° W, which is a reference in the monitoring of the Atlantic meridional overturning circulation (AMOC), was performed. Annual estimates of level gradient Δh and its average values hav between the extreme points of the sections were considered. A high positive correlation between Δh and hav was revealed for sections 70°–25° W (r = 0.81) and 80°–15° W (r = 0.71), as well as the North Atlantic Oscillation with Δh and hav on these sections. It is shown that, despite the sharp weakening of the AMOC until 2010, later, its relative power recovers almost to the average value. Obviously, the weakening of AMOC until 2010 is only the negative phase of its longer fluctuations. Statistical parametrization of average annual values of water transport at a latitude of 26° N was performed to the north and south (AMOC and QUMO) according to sea-level data at this latitude. Regression equations are obtained, which, according to the Δh and hav data, quite accurately (77–92%) describe the dispersion of the AMOC and QUMO time series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Baryshevskaya, G.I., Techeniya sistemy Gol’fstrim i temperaturnyi rezhim Severnoi Atlantiki (Currents of the Gulf Stream System and the Temperature Regime of the North Atlantic), Moscow: Gidrometeoizdat, 1990.

  2. Duvanin, A.I., On the model of interaction between macroprocesses in the ocean and atmosphere, Okeanologiya, 1968, vol. 8, no. 4, pp. 571–580.

    Google Scholar 

  3. Karlin, L.N., Malinin, V.N., and Gordeeva, S.M., Variability of hydrophysical characteristics in the Gulf Stream, Oceanology, 2013, vol. 53, no. 4, pp. 401–409. https://doi.org/10.1134/S0001437013040048

    Article  ADS  Google Scholar 

  4. Malinin, V.N., Statisticheskie metody analiza gidrometeorologicheskoi informatsii (Statistical Methods for the Analysis of Hydrometeorological Information), St. Petersburg: Izd. RGGMU, 2008.

  5. Malinin, V.N. and Angudovich, Ya.I., Variability of the level of the seas of the North Atlantic according to altimetry data, Obshchestvo. Sreda. Razvitie, 2021, no. 4, pp. 79–83.

  6. Malinin, V.N. and Shmakova, V.Yu., Variability of the energy-active ocean zones in North Atlantic, Fundam. Appl. Climatol., 2018, no. 4, pp. 55–70. https://doi.org/10.21513/2410-8758-2018-4-55-70

  7. Malinin, V.N., Gordeeva, S.M., and Shevchuk, O.I., Changes in the global sea level in the current century, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2019, vol. 16, no. 5, pp. 9–22. https://doi.org/10.21046/2070-7401-2019-16-5-9-22

    Article  Google Scholar 

  8. Smirnov, N.P., Vorobyov, V.N., and Drozdov, V.V., Cyclonic center of atmosphere and ocean action in North Atlantic, Uchen. Zap. Ross. Gos. Gidrometeorol. Univ., 2010, no. 15, pp. 117–134.

  9. Stepanov, V.N., The Atlantic meridional heat and volume transports from ocean models and observations, Tr. Gidrometeorol. Nauchno-Issled. Tsentra Ross. Fed., 2017, no. 364, pp. 104–130.

  10. Bryden, H.L., King, B.A., McCarthy, G.D., and McDonagh, E.L., Impact of a 30% reduction in Atlantic meridional overturning during 2009–2010, Ocean Sci., 2014, vol. 245, no. 10, pp. 683–691.

    Article  ADS  Google Scholar 

  11. Buckley, M.W. and Marshall, J., Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review, Rev. Geophys., 2016, vol. 54, pp. 5–63. https://doi.org/10.1002/2015RG000493

    Article  ADS  Google Scholar 

  12. Ceasar, L., Rahmstorf, S., Robinson, A., Feulner, G., and Saba V., Observed fingerprint of a weakening Atlantic Ocean overturning circulation, Nature, 2018, no. 556, pp. 191–196.https://doi.org/10.1038/s41586-018-0006-5

  13. Chafik, L., Nilsen, J.E., Dangendorf, S., Reverdin, G., and Frederikse, T., North Atlantic Ocean circulation and decadal sea level change during the altimetry era, Sci. Rep., 2019, vol. 9, p. 1041. https://doi.org/10.1038/s41598-018-37603-6

    Article  ADS  Google Scholar 

  14. Chen, C., Wang, G., Xie, S.-P., and Liu, W., Why does global warming weaken the Gulf Stream but intensify the Kuroshio? J. Clim., 2020, vol. 32, pp. 7437–7451. https://doi.org/10.1175/JCLI-D-18-0895.1

    Article  ADS  Google Scholar 

  15. Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC Report, Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds., Cambridge, NY: Cambridge Univ. Press, 2013.

    Google Scholar 

  16. Curry, J., Sea Level and Climate Change: Special Report. Climate Forecast Applications Network, 2018. https://curryja.files.wordpress.com/2018/11/special-report-sea-level-rise3.pdf.

  17. Dong, S., Baringer, M.O., and Goni, G.J., Slow down of the Gulf Stream during 1993–2016, Sci. Rep., 2019, vol. 9, p. 6672. https://doi.org/10.1038/s41598-019-42820-8

    Article  ADS  Google Scholar 

  18. Ezer, T., Detecting changes in the transport of the Gulf Stream and the Atlantic overturning circulation from coastal sea level data: The extreme decline in 2009–2010 and estimated variations for 1935–2012, Global Planet. Change, 2015, vol. 129, pp. 23–36.

    Article  ADS  Google Scholar 

  19. Frajka-Williams, E., Ansorge, I.J., Baehr, J., Bryden, H.L., Chidichimo, M.P., Cunningham, S.A., Danabasoglu, G., Dong, S., Donohue, K.A., and Elipot S., Atlantic meridional overturning circulation: Observed transport and variability, Front. Mar. Sci., 2019, vol. 6, p. 260. https://doi.org/10.3389/fmars.2019.00260

    Article  Google Scholar 

  20. Frajka-Williams, E., Moat, B.I., Smeed D.A., Rayner, D., Johns, W.E., Baringer, M.O., Volkov, D., and Collins, J., Atlantic Meridional Overturning Circulation Observed by the RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heatflux Array-Western Boundary Time Series) Array at 26N from 2004 to 2020 (v2020.1), British Oceanographic Data Centre–Natural Environment Research Council, UK, 2021. https://doi.org/10.5285/cc1e34b3-3385-662b-e053-6c86abc03444

  21. Hobbs, W.R. and Willis, J.K., Midlatitude North Atlantic heat transport: A time series based on satellite and drifter data, J. Geophys. Res.: Oceans, 2012, vol. 117, p. C01008.

    Article  ADS  Google Scholar 

  22. Ivchenko, V.O., Sidorenko, D., Danilov, S., Losch, M., and Schröter, J., Can sea surface height be used to estimate oceanic transport variability? Geophys. Res. Lett., 2011, vol. 38, no. 11, p. L11601. https://doi.org/10.1029/2011GL047387

    Article  ADS  Google Scholar 

  23. Kopp, R.E., Does the mid-Atlantic United States sea level acceleration hot spot reflect ocean dynamic variability? Geophys. Res. Lett., 2013, vol. 40, pp. 3981–3985.

    Article  ADS  Google Scholar 

  24. Lellouche, J.-M., Greiner, E., Le Galloudec, O., Garric, G., Regnier, C., Drevillo, M., Benkiran, M., Testut, C.-E., Romain, B.-B., Gasparin, F., Hernandez, O., Levier, B., Drillet, Y., Remy, E., and Le Traon, P.-Y., Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1/12° high resolution system, Ocean Sci., 2018, vol. 14, pp. 1093–1126. https://doi.org/10.5194/os-14-1093-2018

    Article  ADS  Google Scholar 

  25. Lellouche, J.-M., Greiner, E., Bourdallé-Badie, R., Garric, G., Melet, N., Drévillon, M., Bricaud, C., Hamon, M., Le Galloudec, O., Regnier, C., Candela, T., Testut, C.-E., Gasparin, F., Ruggiero, G., Benkiran, M., Drillet, Y., and Le Traon, P.-Y., The Copernicus global 1/12° oceanic and sea ice GLORYS12 reanalysis, Front. Earth Sci., 2021, vol. 9, p. 698876. https://doi.org/10.3389/feart.2021.698876

    Article  Google Scholar 

  26. McCarthy, G.D., Smeed, D.A., Johns, W.E., Frajka-Williams, E., Moat, B.I., Rayner, D., Baringer, M.O., Meinen, C.S., Collins, J., and Bryden, H.L., Measuring the Atlantic meridional overturning circulation at 26° N, Prog. Oceanogr., 2015, vol. 130, pp. 91–111. https://doi.org/10.1016/j.pocean.2014.10.006

    Article  ADS  Google Scholar 

  27. Palter, J.B., The role of the Gulf Stream in European climate, Annu. Rev. Mar. Sci., 2015, vol. 7, pp. 113–137. https://doi.org/10.1146/annurev-marine-010814-015656

    Article  ADS  Google Scholar 

  28. Park, J.C. and Sweet, W.V., Accelerated sea level rise and Florida Current transport, Ocean Sci., 2015, vol. 11, no. 4, pp. 607–615.

    Article  ADS  Google Scholar 

  29. Rahmstorf, S., Box, J.E., Michael, G.F., Mann, E., Robinson, A., Rutherford, S., and Schaffernicht, E.J., Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation, Nat. Clim. Change, 2015, pp. 475–480. https://doi.org/10.1038/nclimate2554

  30. Repschläger, J., Garbe-Schönberg, D., Weinelt, M., and Schneider, R., Holocene evolution of the North Atlantic subsurface transport, Clim. Past, 2017, vol. 13, pp. 333–344.

    Article  Google Scholar 

  31. Smeed, D.A., McCarthy, G., Cunningham, S.A., Frajka-Williams, E., Rayner, D., Johns, W.E., Meinen, C.S., Baringer, M.O., Moat, B.I., Duchez, A., and Bryden, H.L., Observed decline of the Atlantic meridional overturning circulation 2004 to 2012, Ocean Sci., 2014, vol. 10, pp. 29–38. https://doi.org/10.5194/os-10-29-2014

    Article  ADS  Google Scholar 

  32. Smeed, D.A., Josey, S., Johns, W., Moat, B., Frajka-Williams, E., Rayner, D., Meinen, C.S., Baringer, M.O., Bryden, H.L., and McCarthy, G.D., The North Atlantic Ocean is in a state of reduced overturning, Geophys. Res. Lett., 2018, vol. 45, pp. 1527–1533. https://doi.org/10.1002/2017GL076350

    Article  ADS  Google Scholar 

  33. Srokosz, M.A. and Bryden, H.L., Observing the Atlantic Meridional Overturning Circulation yields a decade of inevitable surprises, Science, 2015, vol. 348, no. 6241, p. 1255575. https://doi.org/10.1126/science.1255575

    Article  Google Scholar 

  34. Srokosz, M., Baringer, M., Bryden, H., Cunningham, S., Delworth, T., Lozier, S., Marotzke, J., and Sutton R., Past, present, and future changes in the Atlantic meridional overturning circulation, Bull. Am. Meteorol. Soc., 2012, vol. 93, no. 11, pp. 1663–1676. https://doi.org/10.1175/BAMS-D-11-00151.1

    Article  ADS  Google Scholar 

  35. Volkov, D.L., Monitoring the variability of sea level and surface circulation with satellite altimetry, 2004. https://www.researchgate.net/publication/27685963.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Malinin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malinin, V.N., Angudovich, Y.I. Variability of Sea Level and Circulation in the North Atlantic Based on Satellite Altimetry Data. Cosmic Res 60 (Suppl 1), S18–S26 (2022). https://doi.org/10.1134/S0010952522700034

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952522700034

Keywords:

Navigation