Skip to main content
Log in

Synthesis and Application of Hydrophobic Silicon Dioxide to Improve the Rheological Properties of Strovite-Based Fire Extinguishing Agents

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The rheological characteristics of struvite-based fire extinguishing powder mixtures are comparatively analyzed when using hydrophobic silicon dioxide as a functional filler, obtained during a single-stage synthesis by various methods. Infrared spectroscopy, scanning electron microscopy, low-temperature nitrogen sorption–desorption, and other methods are used to investigate the influence of the synthesis method on the textural and structural properties of hydrophobic functional fillers of fire extinguishing powder mixtures. It is revealed that the key factor affecting the rheological properties of such mixtures is the uniform distribution of the functional filler over the surface of the particles of a fire extinguishing component (struvite). It is proven that the struvite-based powder composition and the developed functional filler are highly effective for fire extinguishment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

REFERENCES

  1. S. A. Smirnov, Research and development of Technology for Fire Extinguishing Materials Based on Ammonium Phosphates (Ivanovo State Univ. of Chem. and Technol., Ivanovo, 2011) [in Russian].

    Google Scholar 

  2. S. N. Vershinin, “Fire Extinguishing Powder Mixture," RF Patent No. 2277003C2, Submitted June 16, 2004; Publ. May 27, 2006.

  3. M. Reuillon, H. Mellottee, L. Alfille, et al., “Powder for Extinguishing Fires of Liquid Substances or of a Mixture of Liquid Substances," US Patent No. US4149976A, Publ. April 17, 1979.

  4. Q. Zuo, “Fire Extinguishing Agent for Fire Protection Engineering," CN Patent No. CN105641846A, Publ. June 08, 2016.

  5. V. Karde, S. Panda, and C. Ghoroi, “Surface Modification to Improve Powder Bulk Behavior under Humid Conditions," Powder Technol. 278, 181–188 (2015); DOI: 10.1016/j.powtec.2015.03.025.

    Article  Google Scholar 

  6. P. York, “The Use of Glidants to Improve the Flowability of Fine Lactose Powder," Powder Technol. 11 (2), 197–198 (1975); DOI: 10.1016/0032-5910(75)80045-3.

    Article  Google Scholar 

  7. A. Sh. Shamsutdinov, N. B. Kondrashova, I. V. Valtsifer, et al., “Manufacturing, Properties, and Application of Nanosized Superhydrophobic Spherical Silicon Dioxide Particles As a Functional Additive to Fire Extinguishing Powders," Ind. Eng. Chem. Res. 60 (32), 11905–11914 (2021); DOI: 10.1021/acs.iecr.1c01999.

    Article  Google Scholar 

  8. I. V. Val’tsifer, A. Sh. Shamsutdinov, N. B. Kondrashova, and A. V. P’yankova, “Highly Effective Fire Extinguishing Powder Mixture," Vest. Perm. Fed. Issl. Ts., No. 2, 6–16 (2022); DOI: 10.7242/2658-705X/2022.2.1.

    Article  Google Scholar 

  9. S. Zhang, H.-S. Shi, S.-W. Huang, and P. Zhang, “Dehydration Characteristics of Struvite-K Pertaining to Magnesium Potassium Phosphate Cement System in Non-Isothermal Condition," J. Therm. Anal. Calorim. 111 (1), 35–40 (2013); DOI: 10.1007/s10973-011-2170-9.

    Article  Google Scholar 

  10. K. Shih and H. Yan, “The Crystallization of Struvite and Its Analog (K-Struvite) From Waste Streams for Nutrient Recycling," Environ. Mater. Waste, 665–686 (2016); DOI: 10.1016/B978-0-12-803837-6.00026-3.

  11. A. Siciliano, C. Limonti, G. M. Curcio, and R. Molinari, “Advances in Struvite Precipitation Technologies for Nutrients Removal and Recovery From Aqueous Waste and Wastewater," Sustainability 12 (18), 7538 (2020); DOI: 10.3390/su12187538.

    Article  Google Scholar 

  12. J. D. Birchall, “On the Mechanism of Flame Inhibition by Alkali Metal Salts," Combust. Flame 14 (1), 85–95 (1970); DOI: 10.1016/S0010-2180(70)80013-X.

    Article  Google Scholar 

  13. H. Yan and K. Shih, “Effects of Calcium and Ferric Ions on Struvite Precipitation: A New Assessment Based on Quantitative X-Ray Diffraction Analysis," Water Res. 95, 310–318 (2016); DOI: 10.1016/j.watres.2016.03.032.

    Article  Google Scholar 

  14. H. Q. Liu, R. W. Zong, J. X. Gao, et al., “A Good Dry Powder to Suppress High Building Fires," APCBEE Proc. 9, 291–295 (2014); DOI: 10.1016/j.apcbee.2014.01.052.

    Article  Google Scholar 

  15. L. Gurchumelia, M. Tsarakhov, T. Machaladze, et al., “Elaboration of New Types, Environmentally Safe Fire-Extinguishing Powders and Establish the Conditions of Extinguish Optimum and Effective Use of Such Powders," Mod. Chem. Applic. 6 (2), 257–266 (2018); DOI: 10.4172/2329-6798.1000257.

    Article  Google Scholar 

  16. M. Dewitte, J. Vrebosh, and A. Van Tiggelen, “Inhibition and Extinction of Premixed Flames by Dust Particle," Combust. Flame 18 (4), 257–266 (1984); DOI: 10.1016/0010-2180(64)90079-3.

    Article  Google Scholar 

  17. A. V. P’yankova, N. B. Kondrashova, I. V. Val’tsifer, et al., “Synthesis and Thermal Behavior of a Struvite-Based Fine Powder Fire-Extinguishing Agent," Neorg. Mater. 57 (10), 1144–1152 (2021) [Inorg. Mater. 57, 1083–1091 (2021); DOI: https://doi.org/10.1134/S0020168521100125].

    Article  Google Scholar 

  18. N. B. Kondrashova, I. V. Val’tsifer, A. Sh. Shamsutdinov, et al., “Control over Rheological Properties of Powdered Formulations Based on Phosphate-Ammonium Salts and Hydrophobized Silicon Oxide," Zh. Prikl. Khim. 90 (10), 1309–1314 (2017) [Russ. J. Appl. Chem. 90, 1592–1597 (2017); DOI: https://doi.org/10.1134/S1070427217100068].

    Article  Google Scholar 

  19. N. B. Kondrashova, A. Sh. Shamsutdinov, I. V. Valtsifer, et al., “Hydrophobized Silicas As Functional Fillers of Fire-Extinguishing Powders," Neorg. Mater. 54 (10), 1141–1146 (2018) [Inorg. Mater. 54, 1078–1083 (2018); DOI: https://doi.org/10.1134/S0020168518100102].

    Article  Google Scholar 

  20. M. Leturia, M. Benali, S. Lagarde, et al., “Characterization of Flow Properties of Cohesive Powders: A Comparative Study of Traditional and New Testing Methods," Powder Technol. 253, 406–423 (2014); DOI: 10.1016/j.powtec.2013.11.045.

    Article  Google Scholar 

  21. L. J. Jallo, M. Schoenitz, E. L. Dreizin, et al., “The Effect of Surface Modification of Aluminum Powder on Its Flowability, Combustion and Reactivity," Powder Technol. 204 (1), 63–70 (2010); DOI: 10.1016/j.powtec.2010.07.017.

    Article  Google Scholar 

  22. J. Yang, A. Sliva, A. Banerjee, et al., “Dry Particle Coating for Improving the Flowability of Cohesive Powders," Powder Technol. 158 (1–3), 21–33 (2005); DOI: 10.1016/j.powtec.2005.04.032.

    Article  Google Scholar 

  23. M. Tanaka, M. Komagata, M. Tsukada, and H. Kamiya, “Fractal Analysis of the Influence of Surface Roughness of Toner Particles on Their Flow Properties and Adhesion Behavior," Powder Technol. 186 (1), 1–8 (2008); DOI: 10.1016/j.powtec.2007.10.030.

    Article  Google Scholar 

  24. S.‘Jonat, S. Hasenzahl, A. Gray, and P. C. Schmidt, “Mechanism of Glidants: Investigation of the Effect of Different Colloidal Silicon Dioxide Types on Powder Flow by Atomic Force and Scanning Electron Microscopy," J. Pharm. Sci. 93 (10), 2635–2644 (2004); DOI: 10.1002/jps.20172.

    Article  Google Scholar 

  25. Z. Yan, S. K. Wilkinson, E. H. Stitt, and M. Marigo, “Investigating Mixing and Segregation Using Discrete Element Modelling (DEM) in the Freeman FT4 Rheometer," Int. J. Pharm. 513 (1/2), 38–48 (2016); DOI: 10.1016/j.ijpharm.2016.08.065.

    Article  Google Scholar 

  26. E. V. Saenko, Y. Huo, A. Sh. Shamsutdinov, et al., “Mesoporous Hydrophobic Silica Nanoparticles As Flow-Enhancing Additives for Fire and Explosion Suppression Formulations," ACS Appl. Nano Mater. 3 (3), 2221–2233 (2020); DOI: 10.1021/acsanm.9b02309.

    Article  Google Scholar 

  27. M. V. Bedilo and B. Zh. Bituev, “Composition for Producing a Combined Gas-Powder Fire Extinguishing Mixture," RF Patent No. 2670297C2, Publ. October 22, 2018.

  28. I. V. Bliznets and V. P. Molchanov, “Thermally Activated Fire Extinguishing Powder," RF Patent No. 2583365C1, Publ. May 10, 2016.

  29. A. P. Amosov, E. A. Kuznets, V. A. Rekshinskii, et al., “Aerosol–Forming Mixture," RF Patent No. 2504415C1, Publ. January 20, 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Huo, I. V. Val’tsifer or V. V. Zamashchikov.

Additional information

Translated from Fizika Goreniya i Vzryva, 2023, Vol. 59, No. 6, pp. 70-81. https://doi.org/10.15372/FGV20230609.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, Y., Val’tsifer, I.V., Shamsutdinov, A.S. et al. Synthesis and Application of Hydrophobic Silicon Dioxide to Improve the Rheological Properties of Strovite-Based Fire Extinguishing Agents. Combust Explos Shock Waves 59, 733–743 (2023). https://doi.org/10.1134/S0010508223060096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508223060096

Keywords

Navigation