Skip to main content
Log in

Effect of the Ignition Position and Obstacle on Vented Methane–Air Deflagration

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

In this study, explosion venting of front, centrally, and rear ignited 9% methane–air mixtures has been conducted in a 1-m3 rectangular vessel with and without cylinders placed parallel to the venting direction. Three pressure peaks \(P_{1}\)\(P_{2}\), and \(P_{\rm ext}\) caused by vent failure, flame-acoustic interaction, and external explosion, respectively, can be distinguished. The pressure peak \(P_{1}\) appears in all the tests and is insensitive to the ignition position, but the existence of obstacles increases its value. The pressure peak \(P_{2}\) only appears in the centrally and front ignited explosions without obstacles. The pressure peak \(P_{\rm ext}\) can be observed in the rear ignition tests and is strengthened by the cylinders. The duration of the Helmholtz oscillations is longer in front ignition tests, whereas addition of cylinders had a minor effect on their frequency. This study also validates the ability of FLACS in predicting a vented methane–air explosion by comparing the simulated pressure–time histories and flame propagations with experimental results. FLACS can basically predict the shape of overpressure curves. If cylinders exist, the simulation results ensure better agreement with the experimental data because FLACS cannot simulate the flame-acoustic-interaction-induced pressure peak \(P_{2}\). The performance of FLACS is satisfactory in rear ignition tests because it calculates \(P_{\rm ext}\) and obstacles’ effect on \(P_{\rm ext}\) exactly. The flame behavior simulated by FLACS is similar to that in experiments, but the effect of the Taylor instability on the flame is not sufficiently considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

REFERENCES

  1. S. J. Wan et al., “Influence of Obstacle Blockage on Methane/Air Explosion Characteristics Affected by Side Venting in a Duct," J. Loss Prev. Process Ind. 54, 281–288 (2018); DOI: 10.1016/j.jlp.2018.05.003.

    Article  MathSciNet  Google Scholar 

  2. C. R. Bauwens, J. Chaffee, and S. Dorofeev, “Effect of Ignition Location, Vent Size, and Obstacles on Vented Explosion Overpressures in Propane–Air Mixtures," Combust. Sci. Technol. 182 (11/12), 1915–1932 (2010); DOI: 10.1080/00102202.2010.497415.

    Article  Google Scholar 

  3. M. G. Cooper, M. Fairweather, and J. P. Tite, “On the Mechanisms of Pressure Generation in Vented Explosions," Combust. Flame 65 (1), 1–14 (1986); DOI: 10.1016/0010-2180(86)90067-2.

    Article  Google Scholar 

  4. X. Rocourt, S. Awamat, I. Sochet, and S. Jallais, “Vented Hydrogen–Air Deflagration in a Small Enclosed Volume," Int. J. Hydrogen Energy 39 (35), 20462–20466 (2014); DOI: 10.1016/j.ijhydene.2014.03.233.

    Article  Google Scholar 

  5. L. Pang, Q.-R. Hu, and K. Yang, “Effect of Multiple Vent Parameters on an External Explosion Induced by an Indoor Premixed Methan–Air Explosion," Fiz. Goreniya Vzryva 58 (2), 12–17 (2022) [Combust., Expl., Shock Waves 58 (2), 135–148 (2022)].

    Article  Google Scholar 

  6. B. Ponizy and J. C. Leyer, “Flame Dynamics in a Vented Vessel Connected to a Duct: 2. Influence of Ignition Site, Membrane Rupture, and Turbulence," Combust. Flame 116 (1/2), 272–281 (1999); DOI: 10.1016/S0010-2180(98)00039-X.

    Article  Google Scholar 

  7. D. Bradley and A. Mitcheson, “The Venting of Gaseous Explosions in Spherical Vessels. I—Theory," Combust. Flame 32, 221–236 (1978); DOI: 10.1016/0010-2180(78)90098-6.

    Article  Google Scholar 

  8. D. Solberg, J. Pappas, and E. Skramstad, “Observations of Flame Instabilities in Large Scale Vented Gas Explosions," Symp. (Int.) Combust. 18 (1), 1607–1614 (1981); DOI: 10.1016/S0082-0784(81)80164-6.

    Article  Google Scholar 

  9. R. M. Kasmani, G. E. Andrews, and H. N. Phylaktou, “Experimental Study on Vented Gas Explosion in a Cylindrical Vessel with a Vent Duct," Process Saf. Environ. Prot. 91 (4), 245–252 (2013); DOI: 10.1016/j.psep.2012.05.006.

    Article  Google Scholar 

  10. R. M. Kasmani, G. E. Andrews, H. N. Phylaktou, and S. K. Willacy, “Influence of Static Burst Pressure and Ignition Position on Duct-Vented Gas Explosions," in 5th Int. Seminar on Fire and Explosion Hazards, 2007, pp. 254–264.

  11. G. Ferrara, A. Di Benedetto, S. Willacy, et al., “Duct-Vented Propane–Air Explosions with Central and Rear Ignition," Fire Saf. Sci. 8, 1341–1352 (2005); DOI: 10.3801/IAFSS.FSS.8-1341.

    Article  Google Scholar 

  12. D. J. Park, Y. S. Lee, and A. R. Green, “Experiments on the Effects of Multiple Obstacles in Vented Explosion Chambers," J. Hazard. Mater. 153 (1/2), 340–350 (2008); DOI: 10.1016/j.jhazmat.2007.08.055.

    Article  Google Scholar 

  13. K.-H. Oh, H. Kim, J.-B. Kim, and S.-E. Lee, “A Study on the Obstacle-Induced Variation of the Gas Explosion Characteristics," J. Loss Prev. Process Ind. 14 (6), 597–602 (2001); DOI: 10.1016/S0950-4230(01)00054-7.

    Article  Google Scholar 

  14. J. Chao and J. H. S. Lee, “The Propagation Mechanism of High Speed Turbulent Deflagrations," Shock Waves 12 (4), 277–289 (2003); DOI: 10.1007/s00193-002-0161-2.

    Article  ADS  Google Scholar 

  15. G. Tomlin, D. M. Johnson, P. Cronin, et al., “The Effect of Vent Size and Congestion in Large-Scale Vented Natural Gas/Air Explosions," J. Loss Prev. Process Ind. 35, 169–181 ( 2015); DOI: 10.1016/j.jlp.2015.04.014.

    Article  Google Scholar 

  16. I. O. Moen, J. H. S. Lee, B. H. Hjertager, et al., “Pressure Development due to Turbulent Flame Propagation in Large-Scale Methane–Air Explosions," Combust. Flame 47, 31–52 (1982); DOI: 10.1016/0010-2180(82)90087-6.

    Article  Google Scholar 

  17. D. Park, A. Green, Y. Lee, and Y. Chen, “Experimental Studies on Interactions between a Freely Propagating Flame and Single Obstacles in a Rectangular Confinement," Combust. Flame 150 (1/2), 27–39 (2007); DOI: 10.1016/j.combustflame.2007.04.005.

    Article  Google Scholar 

  18. V. Di Sarli, A. Di Benedetto, and G. Russo, “Using Large Eddy Simulation for Understanding Vented Gas Explosions in the Presence of Obstacles," J. Hazard. Mater. 169 (1–3), 435–442 (2009); DOI: 10.1016/j.jhazmat.2009.03.115.

    Article  Google Scholar 

  19. C. R. Bauwens, J. Chao, and S. B. Dorofeev, “Effect of Hydrogen Concentration on Vented Explosion Overpressures from Lean Hydrogen–Air Deflagrations," Int. J. Hydrogen Energy 37 (22), 17599–17605 (2012); DOI: 10.1016/j.ijhydene.2012.04.053.

    Article  Google Scholar 

  20. M. Schiavetti, T. Pini, and M. Carcassi, “Homogeneous Hydrogen Deflagrations in Small Scale Enclosure," in VII Int. Conf. on Hydrogen Safety (2017), pp. 533–544.

  21. P. G. Holborn, P. Battersby, J. M. Ingram, et al., “Modelling the Mitigation of Lean Hydrogen Deflagrations in a Vented Cylindrical Rig with Water Fog," Int. J. Hydrogen Energy 37 (20), 15406–15422 (2012); DOI: 10.1016/j.ijhydene.2012.07.131.

    Article  Google Scholar 

  22. P. G. Holborn, P. Battersby, J. M. Ingram, et al., “Modelling the Mitigation of Hydrogen Deflagrations in a Vented Cylindrical Rig with Water Fog and Nitrogen Dilution," Int. J. Hydrogen Energy 38 (8), 3471–3487 (2013); DOI: 10.1016/j.ijhydene.2012.12.134.

    Article  Google Scholar 

  23. A. Marangon, M. Schiavetti, M. Carcassi, et al., “Turbulent Hydrogen Deflagration Induced by Ostacles in Real Confined Environment," Int. J. Hydrogen Energy 34 (10), 4669–4674 (2009); DOI: 10.1016/j.ijhydene.2008.07.053.

    Article  Google Scholar 

  24. I. C. Tolias, J. R. Stewart, A. Newton, et al., “Numerical Simulations of Vented Hydrogen Deflagration in a Medium-Scale Enclosure," J. Loss Prev. Process Ind. 52, 125–139 (2018); DOI: 10.1016/j.jlp.2017.10.014.

    Article  Google Scholar 

  25. S. Lakshmipathy, T. Skjold, H. Hisken, and G. Atanga, “Consequence Models for Vented Hydrogen Deflagrations: CFD vs. Engineering Models," Int. J. Hydrogen Energy 44 (17), 8699–8710 (2019); DOI: 10.1016/j.ijhydene.2018.08.079.

    Article  Google Scholar 

  26. E. Vyazmina and S. Jallais, “Validation and Recommendations for FLACS CFD and Engineering Approaches to Model Hydrogen Vented Explosions: Effects of Concentration, Obstruction Vent Area and Ignition Position," Int. J. Hydrogen Energy 41 (33), 15101–15109 (2016); DOI: 10.1016/j.ijhydene.2016.05.189.

    Article  Google Scholar 

  27. J. Li and H. Hao, “Far-Field Pressure Prediction of a Vented Gas Explosion from Storage Tanks by Using New CFD Simulation Guidance," Process Saf. Environ. Prot. 119, 360–378 (2018); DOI: 10.1016/j.psep.2018.08.004.

    Article  Google Scholar 

  28. J. Li, F. Hernandez, H. Hao, et al., “Vented Methane–Air Explosion Overpressure Calculation—A Simplified Approach Based on CFD," Process Saf. Environ. Prot. 109, 489–508 (2017); DOI: 10.1016/j.psep.2017.04.025.

    Article  Google Scholar 

  29. S. Zhang, Z. S. Tang, J. L. Li, et al., “Effects of Equivalence Ratio, Thickness of Rupture Membrane and Vent Area on Vented Hydrogen–Air Deflagrations in an End-Vented Duct with an Obstacle," Int. J. Hydrogen Energy 44 (47), 26100–26108 (2019); DOI: 10.1016/j.ijhydene.2019.08.057.

    Article  Google Scholar 

  30. H. Li, S. Rui, J. Guo, et al., “Effect of Ignition Position on Vented Hydrogen–Air Deflagration in a 1 m3 Vessel," J. Loss Prev. Process Ind. 62, 103944 (2019); DOI: 10.1016/j.jlp.2019.103944.

    Article  Google Scholar 

  31. C. R. Bauwens, J. Chaffee, and S. Dorofeev, “Effect of Instabilities and Acoustics on Pressure Generated in Vented Propane–Air Explosions," in 22nd Int. Colloquium on the Dynamics of Explosions and Reactive Systems (Minsk, Belarus, 2009).

  32. Q. Bao, Q. Fang, Y. D. Zhang, et al., “Effects of Gas Concentration and Venting Pressure on Overpressure Transients during Vented Explosion of Methane–Air Mixtures," Fuel 175, 40–48 (2016); DOI: 10.1016/j.fuel.2016.01.084.

    Article  Google Scholar 

  33. FLACS v10.5 User’s Manual (2016).

  34. H. W. Li, Z. S. Tang, J. L. Li, et al., “Investigation of Vented Hydrogen–Air Deflagrations in a Congested Vessel," Process Saf. Environ. Prot. 129, 196–201 (2019); DOI: 10.1016/j.psep.2019.07.009.

    Article  Google Scholar 

  35. C. R. Bauwens, J. Chaffee, and S. Dorofeev, “Experimental and Numerical Study of Methane–Air Deflagrations in a Vented Enclosure," Fire Saf. Sci. 9, 1043–1054 (2008); DOI: 10.3801/IAFSS.FSS.9-1043.

    Article  Google Scholar 

  36. S. Rui, J. Guo, G. Li, and C. Wang, “The Effect of Vent Burst Pressure on a Vented Hydrogen–Air Deflagration in a 1 m3 Vessel," Int. J. Hydrogen Energy 43 (45), 21169–21176 (2018); DOI: 10.1016/j.ijhydene.2018.09.124.

    Article  Google Scholar 

  37. D. McCann, G. Thomas, and D. Edwards, “Gasdynamics of Vented Explosions Part I: Experimental Studies," Combust. Flame 59 (3), 233–250 (1985); DOI: 10.1016/0010-2180(85)90128-2.

    Article  Google Scholar 

  38. A. Masri, S. Ibrahim, N. Nehzat, and A. Green, “Experimental Study of Premixed Flame Propagation over Various Solid Obstructions," Exp. Therm. Fluid Sci. 21 (1–3), 109–116 (2000); DOI: 10.1016/S0894-1777(99)00060-6.

    Article  Google Scholar 

  39. J. Daubech, C. Proust, O. Gentilhomme, et al., “Hydrogen–Air Vented Explosions: New Experimental Data," in Proc. of 5th ICHS, 2013, pp. 37–49; DOI: 10.1007/s11932-006-0048-6.

  40. A. L. Kuhl, H. Reichenbach, J. B. Bell, and V. E. Beckner, “Explosion-Induced Ignition and Combustion of Acetylene Clouds," Shock Waves 28 (5), 1031–1037 (2018); DOI: 10.1007/s00193-018-0843-z.

    Article  ADS  Google Scholar 

  41. J. Wang, J. Guo, F. Yang, et al., “Effects of Hydrogen Concentration on the Vented Deflagration of Hydrogen–Air Mixtures in a 1-m3 Vessel," Int. J. Hydrogen Energy 43 (45), 21161–21168 (2018); DOI: 10.1016/j.ijhydene.2018.09.108.

    Article  Google Scholar 

  42. R. D. Blevins, Formulas for Natural Frequency and Mode Shape (Van Nostrand Reinhold Company, London, 1979).

    Google Scholar 

  43. S. Rui, Q. Li, J. Guo, and X. Sun, “Experimental and Numerical Study on the Effect of Low Vent Burst Pressure on Vented Methane–Air Deflagrations," Process Saf. Environ. Prot. 146, 35–42 (2021); DOI: 10.1016/j.psep.2020.08.028.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Guo.

Additional information

Translated from Fizika Goreniya i Vzryva, 2023, Vol. 59, No. 5, pp. 83-95. https://doi.org/10.15372/FGV20230510.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, JL., Guo, J., Sun, XX. et al. Effect of the Ignition Position and Obstacle on Vented Methane–Air Deflagration. Combust Explos Shock Waves 59, 608–619 (2023). https://doi.org/10.1134/S0010508223050106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508223050106

Keywords

Navigation