Skip to main content
Log in

Ignition and Combustion of Synthetic High Molecular Weight Hydrocarbons in High-Enthalpy Air Flow

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper presents experimental data on the ignition induction period of synthetic hydrocarbons at various temperatures and pressures obtained using a shock tube. The experimental results were used to determine the influence of the ignition induction period on the combustion efficiency of hydrocarbons in high-enthalpy flows for diffusion-kinetic regimes An integral mathematical model is presented that takes into account the influence of the kinetic factors of ignition and combustion on the efficiency of physicochemical processes in air flow. The results of calculating the combustion efficiency of synthetic hydrocarbons in flows with different parameters are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. T. N. Shigabiev, L. S. Yanovskiy, F. M. Galimov, and V. F. Ivanov, Endothermic Fuels and Working Fluids of Power and Propulsion Systems (Izd. ABAK, Kazan’, 1996) [in Russian].

    Google Scholar 

  2. Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, Mathematical Theory of Combustion and Explosion (Nauka, Moscow, 1980; Plenum, New York, 1985).

    Google Scholar 

  3. G. A. Pang, D. F. Davidson, and R. K. Hanson, “Experimental Study and Modeling of Shock Tube Ignition Delay Times for Hydrogen–Oxygen–Argon Mixtures at Low Temperatures," Proc. Combust. Inst. 32 (1) (2009), 181–188; DOI: 10.1016/j.proci.2008.06.014.

    Article  Google Scholar 

  4. A. M. Starik, A. M. Savel’ev, and N. S. Titova, “Specific Features of Ignition and Combustion of Composite Fuels Containing Aluminum Nanoparticles (Review)," Fiz. Goreniyz Vzryva 51 (2), 64–91 (2015) [Combust., Expl., Shock Waves 51 (2), 197–222 (2015); https://doi.org/10.1134/S0010508215020057].

    Article  Google Scholar 

  5. V. V. Azatyan, V. M. Prokopenko, and T. R. Timerbulatov, “Controlling the Combustion, Explosion, and Detonation of Gases by Methods of Chemical Kinetics," Zh. Fiz. Khim. 94 (1), 32–39 (2020); DOI: 10.31857/S0044453720010021 [Kinet. Russ. J. Phys. Chem. 94 (1), 41–47 (2020); https://doi.org/10.1134/S0036024420010021].

    Article  ADS  Google Scholar 

  6. R. K. Cheng and A. K. Oppenheim, “Autoignition in Methane–Hydrogen Mixtures," Combust. Flame 58 (2), 125–139 (1984); DOI: 10.1016/0010-2180(84)90088-9.

    Article  Google Scholar 

  7. M. Zhang, J. Wang, Y. Xie, W. Jin, Z. Wei, Z. Huang, and H. Kobayashi, “Flame Front Structure and Burning Velocity of Turbulent Premixed CH4/H2/Air Flames," Int. J. Hydrogen Energy 38 (26), 11421–11428 (2013); DOI: 10.1016/j.ijhydene.2013.05.051.

    Article  Google Scholar 

  8. R. V. Albegov, V. A. Vinogradov, and Yu. M. Shikhman, “Combustion of Methane Injected into an Air Flow with High Subsonic Velocities by Different Methods," Fiz. Goreniyz Vzryva 52 (1), 18–29 (2016) [Combust., Expl., Shock Waves 52 (1), 14–25 (2016); https://doi.org/10.1134/S0010508216010020].

    Article  Google Scholar 

  9. Yu. M. Annushkin, “Basic Rules Governing the Burning of Turbulent Jets of Hydrogen in Air Channels," Fiz. Goreniya Vzryva 17 (4), 59–71 (1981) [Combust., Expl., Shock Waves 17 (4), 400–411 (1981); https://doi.org/10.1007/BF00761209].

    Article  Google Scholar 

  10. I. Grishin, V. Zakharov, and K. Aref’ev, “Experimental Study of Methane Combustion Efficiency in a High-Enthalpy Oxygen-Containing Flow," Appl. Sci. 12 (2), 899 (2022); DOI: 10.3390/app12020899.

    Article  Google Scholar 

  11. I. S. Aver’kov, V. Yu. Aleksandrov, K. Yu. Aref’ev, A. V. Voronetskii, et al., “The Influence of Combustion Efficiency on the Characteristics of Ramjets," Teplofiz. Vys. Temp. 54 (6), 939–949 (2016) [High Temp. 54882–891 (2016); https://doi.org/10.1134/S0018151X16050047].

    Article  Google Scholar 

  12. E. V. Orlik, A. V. Starov, and V. V. Shumskii, “Gas-Dynamic Method of Determining Combustion Efficiency in a Model with Combustion," Fiz. Goreniya Vzryva 40 (4), 23–34 (2004) [Combust., Expl., and Shock Waves 40 (4), 393–402 (2004); https://doi.org/10.1023/B:CESW.0000033561.06611.eb].

    Article  Google Scholar 

  13. K. Yu. Aref’ev, N. V. Kukshinov, and O. S. Serpinskii, “Methodology of Experimental Determining the Combustion Efficiency of Fuel Mixture Flows in Channels of Variable-Cross Section," Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 5, 90–102 (2017) [Fluid Dyn. 52, 682–694 (2017); https://doi.org/10.1134/S0015462817050106.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. V. A. Sosounov, “Research and Development of Ramjets/Ramrockets. Part 1. Integral Solid Propellant Ramrockets," AGARD Lect. Ser., 10–12 (1994).

  15. V. Yu. Aleksandrov and N. V. Kukshinov, “Modified Combustion Efficiency Curve for High-Velocity Model Combustors Integrated with the Inlet," Fiz. Goreniya Vzryva 52 (3), 32–36 (2016) [Combust., Expl., Shock Waves 52 (3), 281–285 (2016). https://doi.org/10.1134/S0010508216030047].

    Article  Google Scholar 

  16. A. V. Talantov, Fundamentals of Combustion Theory (Izd. Kazan. Aviats. Inst., Kazan’, 1975) [in Russian].

    Google Scholar 

  17. M. A. Goldfeld, “Processes of Fuel Self-Ignition and Flame Stabilization in with Transverse Hydrogen Fuel Injection into a Supersonic Combustion Chamber," Teplofiz. Aeromekh. 27 (4), 601–613 (2020) [Thermophys. Aeromech. 27 (4) 573–584 (2020); https://doi.org/10.1134/S0869864320040101].

    Article  ADS  Google Scholar 

  18. V. A. Vinogradov, M. A. Goldfeld and A. V. Starov, “Ignition and Combustion of Hydrogen in a Channel with High Supersonic Flow Velocities at the Channel Entrance," Fiz. Goreniya Vzryva 49 (4), 3–11 (2013) [Combust., Expl., Shock Waves 49 (4), 383–391 (2013); https://doi.org/10.1134/S0010508213040011].

    Article  Google Scholar 

  19. V. A. Levin, V. N. Karasev, L. L. Kartovitskii, et al., “Testing a Dual-Mode Ramjet Engine with Kerosene Combustion," Teplofiz. Aeromekh. 22 (5), 591–597 (2015) [Thermophys. Aeromech. 22 (5), 569–574 (2015); https://doi.org/10.1134/S0869864315050054].

    Article  ADS  Google Scholar 

  20. Sk Md Tausif, K. Das, and P. K. Kundu, “Modified Homogeneous and Heterogeneous Chemical Reaction and Flow Performance of Maxwell Nanofluid with Cattaneo–Christov Heat Flux Law," J. Eng. Thermophys. 31 (1), 64–77 (2022); DOI: 10.1134/S1810232822010064.

    Article  Google Scholar 

  21. B. E. Gelfand, O. E. Popov, and B. B. Chaivanov, Hydrogen: Parameters of Combustion and Explosion (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  22. D. A. Tropin, A. V. Fedorov, O. G. Penyazkov, and V. V. Leshchevich, “Ignition Delay Time in a Methane–Air Mixture in the Presence of Iron Particles," Fiz. Goreniya Vzryva 50 (6), 11–20 (2014) [Combust. Expl., Shock Waves 50, 632–640 (2014); https://doi.org/10.1134/S0010508214060021].

    Article  Google Scholar 

  23. S. V. Gusev, A. V. Nikoporenko, V. S. Zakharov, et al., “The Period of Ignition Delay for Methane–Air Mixture with Hydrogen and Ethylene Additives," Appl. Sci. 11 (22), 10515 (2021); DOI: 10.3390/app112210515.

    Article  Google Scholar 

  24. V. V. Azatyan, “Features of the Physicochemical Mechanisms and Kinetic Laws of Combustion, Explosion, and Detonation of Gases," Kinet. Katal. 61 (3), 291–311 (2020); DOI: 10.31857/S0453881120030041 [Kinet. Catal. 61 (3), 319–338 (2020); https://doi.org/10.1134/S0023158420030039].

    Article  Google Scholar 

  25. S. Wang, B. C. Fan, Y. Z. He, and J. P. Cui, “Shock Tube Study of Kerosene Ignition Delay," 26th Int. Symp. Shock Waves 1, 775–780 (2007).

  26. D. F. Davidson, D. C. Horning, J. T. Herbon, and R. K. Hanson, “Shock Tube Measurements of JP-10 Ignition," Proc. Combust. Inst. 28 (2), 1687–1692 (2000); DOI: 10.1016/S0082-0784(00)80568-8.

    Article  Google Scholar 

  27. G. N. Abramovich, Applied Gas Dynamics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. S. Yanovskiy, K. Yu. Aref’ev or V. M. Ezhov.

Additional information

Translated from Fizika Goreniya i Vzryva, 2023, Vol. 59, No. 4, pp. 35-43. https://doi.org/10.15372/FGV20230404.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanovskiy, L.S., Varaksin, A.Y., Aref’ev, K.Y. et al. Ignition and Combustion of Synthetic High Molecular Weight Hydrocarbons in High-Enthalpy Air Flow. Combust Explos Shock Waves 59, 424–431 (2023). https://doi.org/10.1134/S0010508223040044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508223040044

Keywords

Navigation