Skip to main content
Log in

Significance of the Interlayer in Explosive Welding of Similar and Dissimilar Materials: Review

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Explosive welding is a solid-state joining procedure that involves the propulsion of a flyer plate by the explosion of an explosive to produce welds of two or more similar or dissimilar materials. The development of molten intermetallic compounds at the interface degrades the mechanical properties of welded alloys. However, the employment of an interlayer in explosive welding significantly increases the kinetic energy dissipation and prevents the formation of molten intermetallic compounds at the interface, thereby increasing the bonding strength. Earlier researchers employed interlayers having different values of the thickness, yield strength, ductility, and density. The influence of the interlayer on the microstructure and mechanical properties of explosively welded similar and dissimilar alloys is thoroughly reviewed in this study. In addition, the significance of explosive welding in different environments, such as helium, underwater, and gelatin media, is also summarized. Correspondingly, future advancements in joining of materials through explosive welding are forecasted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

REFERENCES

  1. F. Findik, “Recent Developments in Explosive Welding," Mater. Des. 32 (3), 1081–1093 (2011); DOI: 10.1016/j.matdes.2010.10.017.

    Article  Google Scholar 

  2. S. Mroz, G. Stradomski, H. Dyja, and A. Galka, “Using the Explosive Cladding Method for Production of Mg–Al-Bimetallic Bars," Arch. Civil Mech. Eng. 15 (2), 317–323 (2015); DOI: 10.1016/j.acme.2014.12.003.

    Article  Google Scholar 

  3. Z. Chen, D. Wang, X. Cao, et al., “Influence of Multi-Pass Rolling and Subsequent Annealing on the Interface Microstructure and Mechanical Properties of the Explosive Welding Mg/Al Composite Plates," Mater. Sci. Eng. A 723, 97–108 (2018); DOI: 10.1016/j.msea.2018.03.042.

    Article  Google Scholar 

  4. C. W. D. Kumar, S. Saravanan, and K. Raghukandan, “Numerical and Experimental Investigation on Aluminum 6061-V-Grooved Stainless Steel 304 Explosive Cladding," Defence Technol. 18 (2), 249–260 (2022); DOI: 10.1016/j.dt.2020.11.010.

    Article  Google Scholar 

  5. N. Zhang, W. X. Wang, X. Q. Cao, and J. Q. Wu, “The Effect of Annealing on the Interface Microstructure and Mechanical Characteristics of AZ31B/AA6061 Composite Plates Fabricated by Explosive Welding," Mater. Des. 65, 1100–1109 (2015); DOI: 10.1016/j.matdes.2014.08.025.

    Article  Google Scholar 

  6. D. M. Fronczek, A. Wierzbicka-Miernik, K. Saksl, et al., “The Intermetallic Growth at the Interface of Explosively Welded A1050/Ti gr. 2/A1050 Clads in Relation to the Explosive Material," Arch. Civ. Mech. Eng. 18 (4), 1679–1685 (2018); DOI: 10.1016/j.acme.2018.07.007.

    Article  Google Scholar 

  7. P. Manikandan, K. Hokamoto, A. A. Deribas, et al., “Explosive Welding of Titanium/Stainless Steel by Controlling Energetic Conditions," Mater. Trans. 47 (8), 2049–2055 (2006). DOI: 10.2320/matertrans.47.2049.

    Article  Google Scholar 

  8. M. K. G. Shiran, G. Khalaj, H. Pouraliakbar, et al., “Multilayer Cu/Al/Cu Explosive Welded Joints: Characterizing Heat Treatment Effect on the Interface Microstructure and Mechanical Properties," J. Manuf. Processes 35, 657–663 (2018); DOI: 10.1016/j.jmapro.2018.09.014.

    Article  Google Scholar 

  9. S. Saravanan, K. Raghukandan, and K. Hokamoto, “Improved Microstructure and Mechanical Properties of Dissimilar Explosive Cladding by Means of Interlayer Technique," Arch. Civ. Mech. Eng. 16 (4), 563–568 (2016); DOI: 10.1016/j.acme.2016.03.009.

    Article  Google Scholar 

  10. S. Saravanan, K. Raghukandan, and P. Kumar, “Effect of Wire Mesh Interlayer in Explosive Cladding of Dissimilar Grade Aluminum Plates," J. Centr. South Univ. 26, 604–611 (2019); DOI: 10.1007/s11771-019-4031-9.

    Article  Google Scholar 

  11. P. Manikandan, K. Hokamoto, M. Fujita, et al., “Control of Energetic Conditions by Employing Interlayer of Different Thickness for Explosive Welding of Titanium/304 Stainless Steel," J. Mater. Process. Technol. 195 (1–3), 232–240 (2008); DOI: 10.1016/j.jmatprotec.2007.05.002.

    Article  Google Scholar 

  12. S. Saravanan and K. Raghukandan, “Influence of Interlayer in Explosive Cladding of Dissimilar Metals," Mater. Manuf. Processes 28 (5), 589–594 (2013); DOI: 10.1080/10426914.2012.736665.

    Article  Google Scholar 

  13. S. Saravanan and K. Gajalakshmi, “Soft Computing Approaches for Comparative Prediction of Ram Tensile and Shear Strength in Aluminium–Stainless Steel Explosive Cladding," Arch. Civ. Mech. Eng. 22, 42 (2022); DOI: 10.1007/s43452-021-00367-4.

    Article  Google Scholar 

  14. S. M. Aceves, F. Espinosa-Loza, J. W. Elmer, and R. Huber, “Comparison of Cu, Ti and Ta Interlayer Explosively Fabricated Aluminum to Stainless Steel Transition Joints for Cryogenic Pressurized Hydrogen Storage," Int. J. Hydrogen Energy 40 (3), 1490–1503 (2015); DOI: 10.1016/j.ijhydene.2014.11.038.

    Article  Google Scholar 

  15. S. Saravanan, K. Raghukandan, and G. Murugan, “Effect of Silicon Carbide Particles in Explosive Cladded Aluminum Hybrid Composites," Mater. Res. Proc. 13, 159–162 (2019); DOI: 10.21741/9781644900338-27.

  16. L. G. Robin, K. Raghukandan, S. Saravanan, “Process Parameter Optimization to Achieve Higher Impact Strength in SS316 Wire-Mesh and SiCp Reinforced Aluminium Composite Laminates Produced by Explosive Cladding," Met. Mater. Int. 27, 3493–3507 (2021); DOI: 10.1007/s12540-020-00641-9.

    Article  ADS  Google Scholar 

  17. D. M. Fronczek, A. Wierzbicka-Miernik, K. Saksl, et al., “The Intermetallics Growth at the Interface of Explosively Welded A1050/Ti gr. 2/A1050 Clads in Relation to the Explosive Material," Arch. Civ. Mech. Eng. 18 (4), 1679–1685 (2018); DOI: 10.1016/j.acme.2018.07.007.

  18. W. Sun, W. Zhang, J. Guo, and S. Jiang, “Cracking Behavior in Tensile and Bending Test of Underwater Explosive Welded AZ31/Cu Laminated Composite," Theor. Appl. Fracture Mech. 103, 102256 (2019); DOI: 10.1016/j.tafmec.2019.102256.

    Article  Google Scholar 

  19. H. Paul, L. Lityńska-Dobrzyńska, and M. Prażmowski, “Microstructure and Phase Constitution near the Interface of Explosively Welded Aluminum/Copper Plates," Metall. Mater. Trans. A 44, 3836–3851 (2013); DOI: 10.1007/s11661-013-1703-1.

    Article  ADS  Google Scholar 

  20. P. Bazarnik, B. Adamczyk-Cieślak, A. Gałka, et al., “Mechanical and Microstructural Characteristics of Ti6Al4V/AA2519 and Ti6Al4V/AA1050/AA2519 Laminates Manufactured by Explosive Welding," Mater. Des. 111, 146–157 (2016); DOI: 10.1016/j.matdes.2016.08.088.

    Article  Google Scholar 

  21. J. G. Banker, “Recent Developments in Reactive and Refractory Metal Explosion Clad Technology," NACE Paper No. 03459 (2003).

  22. S. N. Shoukry and A. A. Hegazy, “Manufacturing of Multiclads using a Single Explosive Charge," Propell., Explos., Pyrotech. 13 (5), 144–148 (1988); DOI: 10.1002/prep.19880130504.

    Article  Google Scholar 

  23. K. Hokamoto, T. Izuma, and M. Fujita, “New Explosive Welding Technique to Weld Aluminum Alloy and Stainless Steel Plates using a Stainless Steel Intermediate Plate," Metall. Mater. Trans. A 24, 2289–2297 (1993); DOI: 10.1007/BF02648602.

    Article  ADS  Google Scholar 

  24. B. Crossland, Explosive Welding of Metals and Its Application (Oxford Univ. Press, New York, 1982).

    Google Scholar 

  25. A. A. Deribas, Physics of Reinforcement and Explosive Welding (Nauka, Novosibirsk, 1980) [in Russian].

    Google Scholar 

  26. S. T. S. Al-Hassani and S. A. L. Salem, “Interfacial Wave Generation in Explosive Welding of Laminates," in Shock Waves and High Strain-rate Phenomena in Metals, Ed. by M. A. Meyers and L. E. Murr (Plenum, New York, 1981), Ch. 57.

  27. S. A. L. Salem, L. G. Lazari, and S. T. S. Al-Hassani, “Explosive Welding of Flat Plates in Free Flight," Int. J. Impact Eng. 2 (1), 85–101 (1984); DOI: 10.1016/0734-743X(84)90017-4.

    Article  Google Scholar 

  28. K. Hokamoto, A. Chiba, M. Fujita, and T. Izuma, “Single-Shot Explosive Welding Technique for the Fabrication of Multi-Layered Metal Base Composites: Effect of Welding Parameters Leading to Optimum Bonding Condition," Compos. Eng. 5 (8), 1069–1079 (1995); DOI: 10.1016/0961-9526(95)00059-V.

    Article  Google Scholar 

  29. S. Saravanan and K. Raghukandan, “Thermal Kinetics in Explosive Cladding of Dissimilar Metals," Sci. Technol. Weld. Joining 17 (2), 99–103 (2012); DOI: 10.1179/1362171811Y.0000000080.

    Article  Google Scholar 

  30. M. Acarer, “Electrical, Corrosion and Mechanical Properties of Aluminum–Copper Joints Produced by Explosive Welding," J. Mater. Eng. Perform. 21 (11), 2375–2379 (2012); DOI: 10.1007/s11665-012-0203-6.

    Article  ADS  Google Scholar 

  31. B. Gulenc, “Investigation of Interface Properties and Weldability of Aluminum and Copper Plates by Explosive Welding Method," Mater. Des. 29 (1), 275–278 (2008); DOI: 10.1016/j.matdes.2006.11.001.

    Article  Google Scholar 

  32. P. Tamilchelvan, K. Raghukandan, and S. Saravanan, “Kinetic Energy Dissipation in Ti–SS Explosive Cladding with Multi Loading Ratios," Iran J. Sci. Technol., Trans. Mech. Eng. 38 (M1), 91–96 (2014).

  33. A. Durgutlu, H. Okuyucu, and B. Gulenc, “Investigation of Effect of the Stand-Off Distance on Interface Characteristics of Explosively Welded Copper and Stainless Steel," Mater. Des. 29 (7), 1480–1484 (2008); DOI: 10.1016/j.matdes.2007.07.012.

    Article  Google Scholar 

  34. N. Kahraman and B. Gulenc, “Microstructural and Mechanical Properties of Cu–Ti Plates Bonded through Explosive Welding Process," J. Mater. Process. Technol. 169 (1), 67–71 (2005); DOI: 10.1016/j.jmatprotec.2005.02.264.

    Article  Google Scholar 

  35. Y. B. Yan, Z. W. Zhang, W. Shen, et al., “Microstructure and Properties of Magnesium AZ31B–Aluminium 7075 Explosively Welded Composite Plate," Mater. Sci. Eng. A 527 (9), 2241–2245 (2010); DOI: 10.1016/j.msea.2009.12.007.

    Article  Google Scholar 

  36. N. Kahraman, B. Gulenc, and F. Findik, “Corrosion and Mechanical-Microstructural Aspects of Dissimilar Joints of Ti–6Al–4V and Al Plates," Int. J. Impact Eng. 34 (8), 1423–1432 (2007); DOI: 10.1016/j.ijimpeng.2006.08.003.

    Article  Google Scholar 

  37. P. Mastanaiah, G. Madhusudhan Reddy, K. Satya Prasad, and C. V. S. Murthy, “An Investigation on Microstructures and Mechanical Properties of Explosive Cladded C103 Niobium Alloy over C263 Nimonic Alloy," J. Mater. Process. Technol. 214 (11), 2316–2324 (2014); DOI: 10.1016/j.jmatprotec.2014.04.025.

    Article  Google Scholar 

  38. S. A. A. Akbari Mousavi, S. T. S. Al-Hassani, and A. G. Atkins, “Bond Strength of Explosively Welded Specimens," Mater. Des. 29 (7), 1334–1352 (2008); DOI: 10.1016/j.matdes.2007.06.010.

    Article  Google Scholar 

  39. A. A. Deribas, V. M. Kudinov, and F. I. Matveenkov, “Effect of the Initial Parameters on the Process of Wave Formation in Explosive Welding," Fiz. Goreniya Vzryva 3 (4), 561–568 (1967) [Combustion, Exlos., Shock Waves 3 (4), 344–348 (1967)].

    Article  Google Scholar 

  40. K. Howard, S. Lawson, and Y. Zhou, “Welding Aluminum Sheet using a High-Power Diode Laser," Weld. Res. 85, 101–110 (2006).

    Google Scholar 

  41. T. Vieira da Cunha, A. L. Voigt, and C. E. N. Bohórquez, “Analysis of Mean and RMS Current Welding in the Pulsed TIG Welding Process," J. Mater. Process. Technol. 231, 449–455 (2016); DOI: 10.1016/j.jmatprotec.2016.01.005.

    Article  Google Scholar 

  42. V. V. Rybin, E. A. Ushsnova, and N. Yu. Zolotorevskii, “Features of Misoriented Structures in a Copper–Copper Bilayer Plate Obtained by Explosive Welding," Zh. Tekh. Fiz. 83 (9) 63–72 (2013) [Tech. Phys. 58, 1304–1312 (2013); http://dx.doi.org/10.1134/S1063784213090223].

    Article  ADS  Google Scholar 

  43. M. Gloc, M. Wachowski, T. Plocinski, and K. J. Kurzydlowski, “Microstructural and Microanalysis Investigations of Bond Titanium Grade1/Low Alloy Steel st52–3N Obtained by Explosive Welding," J. Alloys Compd. 671, 446–451 (2016); DOI: 10.1016/j.jallcom.2016.02.120.

    Article  Google Scholar 

  44. J. Song, A. Kostka, M. Veehmayer, and D. Raabe, “Hierarchical Microstructure of Explosive Joints: Example of Titanium to Steel Cladding," Mater. Sci. Eng. A 528 (6), 2641–2647 (2011); DOI: 10.1016/j.msea.2010.11.092.

    Article  Google Scholar 

  45. D. M. Fronczek, J. Wojewoda-Budka, R. Chulist, et al., “Structural Properties of Ti/Al Clads Manufactured by Explosive Welding and Annealing," Mater. Des. 91, 80–89 (2016); DOI: 10.1016/j.matdes.2015.11.087.

    Article  Google Scholar 

  46. M. R. Islam, M. Ishak, L. H. Shah, et al., “Dissimilar Welding of A7075-T651 and AZ31B Alloys by Gas Metal Arc Plug Welding Method," Int. J. Adv. Manuf. Technol. 88, 2773–2783 (2017); DOI: 10.1007/s00170-016-8993-6.

    Article  Google Scholar 

  47. Q. Wu and S. Yang, “Microstructure and Properties of Bonding Interface in Explosive Welded AZ31/1060 Composite Plate," Chin. J. Rare Met. 40 (10), 996–1001 (2016).

    Google Scholar 

  48. M. A. H. Gepreel and M. Niinomi, “New Ti-Alloys with Superior Specific Strength," in 22nd Int. Conf. on Metallurgy and Materials METAL 2013, Conf. Proc. (2013).

  49. Q. Wu, “Study on Welding Technology of Magnesium Alloy/Aluminum Alloy Composite Plate," in Master research (Beijing Inst. of Technol., Beijing, 2016).

  50. S. Yang and J. Bao, “Microstructure and Properties of 5083Al/1060Al/AZ31 Composite Plate Fabricated by Explosive Welding," J. Mater. Eng. Perform. 27, 1177–1184 (2018); DOI: 10.1007/s11665-018-3174-4.

    Article  ADS  Google Scholar 

  51. M. Tabasi, M. Farahani, M. K. B. Beshrati Givi, et al., “Dissimilar Friction Stir Welding of 7075 Aluminum Alloy to AZ31 Magnesium Alloy Using SiC Nanoparticles," Int. J. Adv. Manuf. Technol. 86, 705–715 (2015); DOI: 10.1007/s00170-015-8211-y.

    Article  Google Scholar 

  52. P. Chen, J. Feng, Q. Zhou, et al., “Investigation on the Explosive Welding of 1100 Aluminium Alloy and AZ31 Magnesium Alloy," J. Mater. Eng. Perform. 25, 2635–2641 (2016); DOI: 10.1007/s11665-016-2088-2.

    Article  ADS  Google Scholar 

  53. K. Hokamoto, M. Fujita, H. Shimokawa, and H. Okugawa, “A New Method for Explosive Welding of Al/ZrO2 Joint Using Regulated Underwater Shock Wave," J. Mater. Process. Technol. 85 (1–3), 175–179 (1999); DOI: 10.1016/S0924-0136(98)00286-6.

    Article  Google Scholar 

  54. K. Hokamoto, K. Nakata, A. Mori, et al., “Dissimilar Material Welding of Rapidly Solidified Foil and Stainless Steel Plate using Underwater Explosive Welding Technique," J. Alloy Compd. 472 (1/2), 507–511 (2009); DOI: 10.1016/j.jallcom.2008.05.002.

    Article  Google Scholar 

  55. Satyanarayan, S. Tanaka, A. Mori, and K. Hokamoto, “Welding of Sn and Cu Plates Using Controlled Underwater Shock Wave," J. Mater. Process. Technol. 245, 300–308 (2017); DOI: 10.1016/j.jmatprotec.2017.02.030.

    Article  Google Scholar 

  56. W. Sun, X. Li, and K. Hokamoto, “Fabrication of Graded Density Impactor via Underwater Shock Wave and Quasi-Isentropic Compression Testing at Two-Stage Gas Gun Facility," Appl. Phys. A 117, 1941–1946 (2014); DOI: 10.1007/s00339-014-8663-1.

    Article  Google Scholar 

  57. L. F. Zeng, R. Gao, Q. F. Fang, et al., “High Strength and Thermal Stability of Bulk Cu/Ta Nanolamellar Multilayers Fabricated by Cross Accumulative Roll Bonding," Acta Mater. 110, 341–351 (2016); DOI: 10.1016/j.actamat.2016.03.034.

    Article  ADS  Google Scholar 

  58. H. Zhang, K. X. Jiao, J. L. Zhang, and J. Liu, “Microstructure and Mechanical Properties Investigations of Copper–Steel Composite Fabricated by Explosive Welding," Mater. Sci. Eng. A 731, 278–287 (2018); DOI: 10.1016/j.msea.2018.06.051.

    Article  Google Scholar 

  59. H. Zhang, K. X. Jiao, J. L. Zhang, and J. Liu, “Experimental and Numerical Investigations of Interface Characteristics of Copper/Steel Composite Prepared by Explosive Welding," Mater. Des. 154, 140–152 (2018); DOI: 10.1016/j.matdes.2018.05.027.

    Article  Google Scholar 

  60. T. Zhang, W. Wang, J. Zhou, et al., “Interfacial Characteristics and Nano-Mechanical Properties of Dissimilar 304 Austenitic Stainless Steel/AZ31B Mg Alloy Welding Joint," J. Manuf. Process 42, 257–265 (2019); DOI: 10.1016/j.jmapro.2019.04.031.

    Article  Google Scholar 

  61. D. M. Fronczek, R. Chulist, L. L. Dobrzynska, et al., “Microstructure and Kinetics of Intermetallic Phase Growth of Three-Layered A1050/AZ31/A1050 Clads Prepared by Explosive Welding Combined with Subsequent Annealing," Mater. Des. 130, 120–130 (2017); DOI: 10.1016/j.matdes.2017.05.051.

    Article  Google Scholar 

  62. R. Abedi and A. Akbarzadeh, “Bond Strength and Mechanical Properties of Three-Layered St/AZ31/St Composite Fabricated by Roll Bonding," Mater. Des. 88, 880–888 (2015); DOI: 10.1016/j.matdes.2015.09.043.

    Article  Google Scholar 

  63. M. Khanzadeh, G. Shiran, and G. Khalaj, “Multilayer Cu/Al/Cu Explosive Welded Joints: Characterizing Heat Treatment Effect on the Interface Microstructure and Mechanical Properties," J. Manuf. Process 35, 657–663 (2018); DOI: 10.1016/j.jmapro.2018.09.014.

  64. F. Montheillet and J.-P. Thomas, “Dynamic Recrystallization of Low Stacking Fault Energy Metals," in Metallic Materials with High Structural Efficiency, Ed. by O. N. Senkov, D. B. Miracle, and S. A. Fistov (Kluwer Acad. Publ., 2004), pp. 357–368.

  65. G. H. S. F. L. Carvalho, I. Galvão, R. Mendes, et al., “Microstructure and Mechanical Behaviour of Aluminium–Carbon Steel and Aluminium–Stainless Steel Clads Produced with an Aluminium Interlayer," Mater. Charact. 155, 109819 (2019); DOI: 10.1016/j.matchar.2019.109819.

    Article  Google Scholar 

  66. H. Wang and Y. Wang, “High-Velocity Impact Welding Process: A Review," Metals 9 (2), 144 (2019); DOI: 10.3390/met9020144.

    Article  Google Scholar 

  67. Y. Kaya, “Microstructural, Mechanical and Corrosion Investigations of Ship Steel–Aluminum Bimetal Composites Produced by Explosive Welding," Metals 8 (7), 544 (2018); DOI: 10.3390/met8070544.

    Article  Google Scholar 

  68. L. Tricarico, R. Spina, D. Sorgente, and M. Brandizzi, “Effects of Heat Treatments on Mechanical Properties of Fe/Al Explosion-Welded Structural Transition Joints," Mater. Des. 30 (7), 2693–2700 (2009); DOI: 10.1016/j.matdes.2008.10.010.

    Article  Google Scholar 

  69. P. Corigliano, V. Crupi, and E. Guglielmino, “Nonlinear Finite Element Simulation of Explosive Welded Joints of Dissimilar Metals for Shipbuilding Applications," Ocean Eng. 160, 346–353 (2018); DOI: 10.1016/j.oceaneng.2018.04.070.

    Article  Google Scholar 

  70. A. Gullino, P. Matteis, and F. D’Aiuto, “Review of Aluminum-to-Steel Welding Technologies for Car-Body Applications," Metals 9 (3), 315 (2019); DOI: 10.3390/met9030315.

    Article  Google Scholar 

  71. X. Guo, H. Wang, Z. Liu, et al., “Interface and Performance of CLAM Steel/Aluminum Clad Tube Prepared by Explosive Bonding Method," Int. J. Adv. Manuf. Technol. 82, 543–548 (2016); DOI: 10.1007/s00170-015-7380-z.

    Article  Google Scholar 

  72. G. H. S. F. L. Carvalho, I. Galvão, R. Mendes, et al., “Formation of Intermetallic Structures at the Interface of Steel-to-Aluminium Explosive Welds," Mater. Charact. 142, 432–442 (2018); DOI: 10.1016/j.matchar.2018.06.005.

    Article  Google Scholar 

  73. G. H. S. F. L. Carvalho, I. Galvão, R. Mendes, et al., “Explosive Welding of Aluminium to Stainless Steel," J. Mater. Process. Technol. 262, 340–349 (2018); DOI: 10.1016/j.jmatprotec.2018.06.042.

    Article  Google Scholar 

  74. L. G. Robin, K. Raghukandan, and S. Saravanan, “Studies on Wire-Mesh and Silicon Carbide Particle Reinforcements in Explosive Cladding of Al 1100–Al 5052 Sheets," J. Manuf. Process. 56, Pt. A, 887–897 (2020); DOI: 10.1016/j.jmapro.2020.05.056

    Article  Google Scholar 

  75. B. Gülenç, Y. Kaya, A. Durgutlu, et al., “Production of Wire Reinforced Composite Materials through Explosive Welding," Arch. Civ. Mech. Eng. 16 (1), 1–8 (2016); DOI: 10.1016/j.acme.2015.09.006.

    Article  Google Scholar 

  76. S. Saravanan and K. Raghukandan, “Effect of Silicon Carbide and Wire-Mesh Reinforcements in Dissimilar Grade Aluminium Explosive Clad Composites," Defence Technol. 16 (6), 1160–1166 (2020); DOI: 10.1016/J.DT.2019.12.009.

    Article  Google Scholar 

  77. D. M. Fronczek, R. Chulist, Z. Szulc, and J. Wojewoda-Budka, “Growth Kinetics of TiAl3 Phase in Annealed Al/Ti/Al Explosively Welded Clads," Mater. Lett. 198, 160–163 (2017); DOI: 10.1016/j.matlet.2017.04.025.

    Article  Google Scholar 

  78. R. Chulist, D. M. Fronczek, Z. Szulc, and J. Wojewoda-Budka, “Texture Transformations near the Bonding Zones of the Three-Layer Al/Ti/Al Explosively Welded Clads," Mater. Charact. 129, 242–246 (2017); DOI: 10.1016/j.matchar.2017.05.007.

    Article  Google Scholar 

  79. T. T. Zhang, W. X. Wang, J. Zhou, et al., “Investigation of Interface Bonding Mechanism of an Explosively Welded Tri-Metal Titanium/Aluminum/Magnesium Plate by Nanoindentation," JOM 70, 504–509 (2018); DOI: 10.1007/s11837-017-2517-1.

    Article  Google Scholar 

  80. F. Foadian, M. Soltanieh, M. Adeli, and M. Etminanbakhsh, “The Formation of TiAl3 During Heat Treatment in Explosively Welded Ti–Al Multilayers," Iran J. Mater. Sci. Eng. 11 (4), 12–19 (2014).

    Google Scholar 

  81. F. Foadian, M. Soltanieh, M. Adeli, and M. Etminanbakhsh, “A Study on the Formation of Intermetallics During the Heat Treatment of Explosively Welded Al–Ti Multilayers," Metall. Mater. Trans. A 45, 1823–1832 (2014); DOI: 10.1007/s11661-013-2144-6.

    Article  ADS  Google Scholar 

  82. E. S. Ege, O. T. Inal, and C. A. Zimmerly, “Response Surface Study on Production of Explosively-Welded Aluminum-Titanium Laminates," J. Mater. Sci. 33, 5327–5338 (1998); DOI: 10.1023/A:1004485914302.

    Article  ADS  Google Scholar 

  83. L. Qin, J. Wang, Q. Wu, et al., “In-situ Observation of Crack Initiation and Propagation in Ti/Al Composite Laminates During Tensile Test," J. Alloy Compd. 712, 69–75 (2017); DOI: 10.1016/j.jallcom.2017.04.063.

    Article  Google Scholar 

  84. D. V. Pavliukova, V. I. Mali, A. A. Bataev, et al., “Influence of the Explosively Welded Composites Structure on the Diffusion Processes Occurring During Annealing," in Conf. IFOST, Ulaanbaatar, Mongolia, 28 June–01 July, 2013, pp. 183–186; DOI: 10.1109/IFOST.2013.6616967.

  85. I. A. Bataev, A. A. Bataev, V. I. Mali, and D. V. Pavliukova, “Structural and Mechanical Properties of Metallic–Intermetallic Laminate Composites Produced by Explosive Welding and Annealing," Mater. Des. 35, 225–234 (2012); DOI: 10.1016/j.matdes.2011.09.030.

    Article  Google Scholar 

  86. D. V. Lazurenko, I. A. Bataev, V. I. Mali, et al., “Explosively Welded Multilayer Ti–Al Composites: Structure and Transformation During Heat Treatment," Mater. Des. 102, 122–130 (2016); DOI: 10.1016/j.matdes.2016.04.037.

    Article  Google Scholar 

  87. L. F. Trueb, “Microstructural Effects of Heat Treatment on the Bond Interface of Explosively Welded Metals," Metall. Trans. 2, 145–153 (1971); DOI: 10.1007/BF02662650.

    Article  ADS  Google Scholar 

  88. A. Asemabadi, M. Sedighi, and M. Honarpisheh, “Investigation of Cold Rolling Influence on the Mechanical Properties of Explosive-Welded Al/Cu Bimetal," Mater. Sci. Eng. A 558, 144–149 (2012); DOI: 10.1016/j.msea.2012.07.102.

    Article  Google Scholar 

  89. M. Prażmowski and H. Paul, “The Effect of Stand-Off Distance on the Structure and Properties of Zirconium–Carbon Steel Bimetal Produced by Explosion Welding," Arch. Metallurgy Mater. 57 (4), 1201–1210 (2012); DOI: 10.2478/v10172-012-0134-0.

    Article  Google Scholar 

  90. W. Yang, X. Cao, L. Wang, et al., “Microstructure and Mechanical Properties of AA6061/AZ31B/AA6061 Composite Plates Fabricated by Vertical Explosive Welding and Subsequent Hot Rolling," Mater. Res. 21 (6), 20180350 (2018); DOI: 10.1590/1980-5373-MR-2018-0350.

    Article  Google Scholar 

  91. M. Duan, X. Yang, K. Feng, et al., “Experimental Investigation of Explosive Weld of Bimetal Ribbed Plate Based on Boss Charging," Fusion Eng. Des. 129, 294–299 (2018); DOI: 10.1016/j.fusengdes.2017.10.018.

    Article  Google Scholar 

  92. P. V. Vaidyanathan and A. R. Ramanathan, “Design for Quality Explosive Welding," J. Mater. Process. Technol. 32 (1/2), 439–448 (1992); DOI: 10.1016/0924-0136(92)90200-C.

    Article  Google Scholar 

  93. L. M. Zhao and Z. D. Zhang, “Effect of Zn Alloy Interlayer on Interface Microstructure and Strength of Diffusion-Bonded Mg–Al Joints," Scripta Mater. 58 (4), 283–286 (2008); DOI: 10.1016/j.scriptamat.2007.10.006.

    Article  Google Scholar 

  94. S. S. Seyyed Afghahi, M. Jafarian, M. Paidar, and M. Jafarian, “Diffusion Bonding of Al 7075 and Mg AZ31 Alloys: Process Parameters, Microstructural Analysis and Mechanical Properties," Trans. Nonferrous Met. Soc. China 26 (7), 1843–1851 (2016); DOI: 10.1016/S1003-6326(16)64295-4.

    Article  Google Scholar 

  95. X. P. Zhang, T. H. Yang, S. Castagne, and J. T. Wang, “Microstructure; Bonding Strength and Thickness Ratio of Al/Mg/Al Alloy Laminated Composites Prepared by Hot Rolling," Mater. Sci. Eng. A 28 (4/5), 1954–1960 (2011); DOI: 10.1016/j.msea.2010.10.105.

    Article  Google Scholar 

  96. J. H. Han, J. P. Ahn, and M. C. Shin, “Effect of Interlayer Thickness on Shear Deformation Behavior of AA5083 Aluminum Alloy/SS41 Steel Plates Manufactured by Explosive Welding," J. Mater. Sci. 38, 13–18 (2003); DOI: 10.1023/A:1021197328946.

    Article  ADS  Google Scholar 

  97. T. Morishige, A. Kawaguchi, M. Tsujikawa, et al., “Dissimilar Welding of Al and Mg Alloys by FSW," Mater. Trans. 49 (5), 1129–1131 (2008); DOI: 10.2320/matertrans.MC200768.

    Article  Google Scholar 

  98. I. Shigematsu, Y.-J. Kwon, and N. Saito, “Dissimilar Friction Stir Welding for Tailor-Welded Blanks of Aluminum and Magnesium Alloys," Mater. Trans. 50 (1), 197–203 (2009); DOI: 10.2320/matertrans.MER2008326.

    Article  Google Scholar 

  99. Y. C. Chen and K. Nakata, “Friction Stir Lap Joining Aluminum and Magnesium Alloys," Scripta Mater. 58 (6), 433–436 (2008); DOI: 10.1016/j.scriptamat.2007.10.033.

    Article  Google Scholar 

  100. X. B. Zhao, L. Liu, W. G. Zhang, et al., “Analysis of Competitive Growth Mechanism of Stray Grains of Single Crystal Superalloys during Directional Solidification Process," Rare Metal Mater. Eng. 40 (1), 9–13 (2011); DOI: 10.1016/S1875-5372(11)60009-X.

    Article  Google Scholar 

  101. A. C. Somasekharan and L. E. Murr, “Microstructures in Friction-Stir Welded Dissimilar Magnesium Alloys and Magnesium Alloys to 6061-T6 Aluminum Alloy," Mater. Charact. 52 (1), 49–64 (2004); DOI: 10.1016/j.matchar.2004.03.005.

    Article  Google Scholar 

  102. R. S. Mishra and Z. Y. Ma, “Friction Stir Welding and Processing," Mater. Sci. Eng. R 50 (1/2), 1–78 (2005); DOI: 10.1016/j.mser.2005.07.001.

    Article  Google Scholar 

  103. Y. Kawamura, “Liquid Phase and Supercooled Liquid Phase Welding of Bulk Metallic Glasses," Mater. Sci. Eng. A 375–377, 112–119 (2004); DOI: 10.1016/j.msea.2003.10.097.

    Article  Google Scholar 

  104. S. Saravanan and K. Raghukandan, “Microstructure, Strength and Welding Window of Aluminum Alloy–Stainless Steel Explosive Cladding with Different Interlayers," Trans. Nonferrous Met. Soc. China 32 (1), 91–103 (2022); DOI: 10.1016/S1003-6326(21)65780-1.

    Article  Google Scholar 

  105. G. R. Cowan and A. H. Holtzman, “Flow Configurations in Colliding Plates: Explosive Bonding," J. Appl. Phys. 34 (4), 928–938 (1963); DOI: 10.1063/1.1729565.

    Article  ADS  Google Scholar 

  106. R. Borrisutthekul, Y. Miyashita, and Y. Mutoh, “Dissimilar Material Laser Welding between Magnesium Alloy AZ31B and Aluminum Alloy A5052-O," Sci. Technol. Adv. Mater. 6 (2), 199–204 (2005); DOI: 10.1016/j.stam.2004.11.014.

    Article  ADS  Google Scholar 

  107. X.-Y. Zeng, Y.-X. Wang, X.-Q. Li, et al., “Effect of Inert Gas-Shielding on the Interface and Mechanical Properties of Mg/Al Explosive Welding Composite Plate," J. Manuf. Process. 45, 166–175 (2019); DOI: 10.1016/j.jmapro.2019.07.007.

    Article  Google Scholar 

  108. Explosive Welding, Forming, and Compaction, Ed. by T. Z. Blazynski (Springer, Dordrecht, 1983); DOI: 10.1007/978-94-011-9751-9.

    Book  Google Scholar 

  109. M. A. Habib, H. Keno, R. Uchida, et al., “Cladding of Titanium and Magnesium Alloy Plates Using Energy-Controlled Underwater Three Layer Explosive Welding," J. Mater. Process. Techol. 217, 310–316 (2015); DOI: 10.1016/j.jmatprotec.2014.11.032.

    Article  Google Scholar 

  110. A. Mori, K. Tamaru, K. Hokamoto, and M. Fujita, “Underwater Explosive Welding, Discussion Based on Weldable Window," AIP Conf. Proc. 845 (1), 1543–1546 (2006); DOI: 10.1063/1.2263620.

  111. A. Mori, K. Hokamoto, and M. Fujita, “Characteristics of the New Explosive Welding Technique Using Underwater Shock Wave-Based on Numerical Analysis," Mater. Sci. Forum 465–466, 307–312 (2004); DOI: 10.4028/www.scientific.net/MSF.465-466.307.

  112. A. Mori, M. Nishi, and K. Hokamoto, “Underwater Shock Wave Weldability Window for Sn–Cu Plates," J. Mater. Process. Technol. 267, 152–158 (2019); DOI: 10.1016/j.jmatprotec.2018.11.044.

    Article  Google Scholar 

  113. K. Nagayama, Y. Mori, Y. Motegi, and M. Nakahara, “Shock Hugoniot for Biological Materials," Shock Waves 15 (3), 267–275 (2006); DOI: 10.1007/s00193-006-0030-5.

    Article  ADS  Google Scholar 

  114. C. J. Shepherd, G. J. Appleby-Thomas, P. J. Hazell, and D. F. Allsop, “The Dynamic Behaviour of Ballistic Gelatin," AIP Conf. Proc. 1195 (1), 1399–1402 (2009); DOI: 10.1063/1.3295071.

  115. D. Inao, S. Tanaka, T. Yamashita, and K. Hokamoto, “Visualization of Shock Wave Behavior in Water and Gelatin," Meas 148, 106929 (2019); DOI: 10.1016/j.measurement.2019.106929.

    Article  Google Scholar 

  116. D. G. Brasher and D. J. Butler, “Explosive Welding: Principles and Potentials," Adv. Mater. Process 147 (3), 37–38 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Prabhat Kumar or S. Saravanan.

Additional information

Translated from Fizika Goreniya i Vzryva, 2023, Vol. 59, No. 3, pp. 3-31. https://doi.org/10.15372/FGV20230301.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Ghosh, S.K., Saravanan, S. et al. Significance of the Interlayer in Explosive Welding of Similar and Dissimilar Materials: Review. Combust Explos Shock Waves 59, 253–278 (2023). https://doi.org/10.1134/S0010508223030012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508223030012

Keywords

Navigation