Skip to main content
Log in

Temperature of Polymethyl Methacrylate in a Secondary Shock Wave

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The brightness temperature of polymethyl methacrylate subjected to a shock wave reflected from a transparent LiF or sapphire window was measured by a pyrometric method. The pressure range in the primary wave was 20–40 GPa, and that in the reflected wave was 30–78 GPa. At an intensity of the primary shock wave in the range of low pressures (19.2–20.8 GPa), the temperature values in the reflected wave lie on a single-shock Hugoniot curve within the experimental error, as opposed to what might be expected based on the gas-dynamic calculation for the case of double shock loading. As the primary shock pressure increases to 38–41 GPa, the reflected shock temperature values [(2.4–2.6)\(\,\cdot\,\)103 K] become lower than on the single-shock Hugoniot (3.1 \(\,\cdot\,\) 103 K) but remain larger than those calculated by the equation of state (2.3\(\,\cdot\,\)103 K) under the assumption that the composition of polymethyl methacrylate is inert. It is concluded that this behavior of the temperature dependence is due to the depolymerization and subsequent decomposition of polymethyl methacrylate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. L. V. Al’tshuler, “Use of Shock Waves in High-Pressure Physics," Usp. Fiz. Nauk 85 (2), 197–258 (1965) [Sov. Phys. Usp. 8 (1), 52 (1965).

    Article  ADS  Google Scholar 

  2. Experimental Data on Shock Compression and Adiabatic Expansion of Condensed Materials, Ed. by R. F. Trunin (RFNC-VNIIEF, Sarov, 2006) [in Russian].

  3. K. V. Khishchenko, “Temperature and Heat Capacity of Polymethyl Methacrylate behind the Front of Strong Shock Waves," Teplofiz. Vysok. Temp. 35 (6), 1002–1005 (1997).

    Google Scholar 

  4. K. V. Khishchenko, I. V. Lomonosov, V. E. Fortov, and O. F. Shlenskii, “Thermodynamic Properties of Plastics an a Wide Range of Densities and Temperatures," Dokl. Akad. Nauk, 349 (3), 322 (1996).

  5. D. D. Bloomquist and S. A. Sheffield, “Shock Compression Temperature Rise in Polymethylmethacrylate Determined from Resistivity of Embedded Copper Foils," Appl. Phys. Lett.  38 (3), 185–187 (1981).

    Article  ADS  Google Scholar 

  6. J. X. Gao, R. Sh. Bai, and Ch. Cheng, “Measurement of Instantaneous Temperature in Shock-Loaded Nonmetallic Solids," J. Appl. Phys. 67 (5), 2272–2277 (1990); DOI: 10.1063/1.345520.

    Article  ADS  Google Scholar 

  7. Ya. B. Zel’dovich, S. B. Kormer, S. V. Sinitsyn, and A. I. Kuryapin, “Temperature and Specific Heat of Plexiglas Compressed by a Shock Wave," Dokl. Akad. Nauk SSSR 122 (1), 48–50 (1958).

    Google Scholar 

  8. S. B. Kormer, “Optical Study of the Characteristics of Shock-Compressed Condensed Dielectrics," Usp. Fiz. Nauk 94 (4), 641–687 (1968) [Sov. Phys. Usp. 11 (2), 229 (1968)].

    Article  ADS  Google Scholar 

  9. L. F. Gudarenko, M. V. Zhernokletov, S. I. Kirshanov, et al., “Properties of Shock-Compressed Carbogal. Equations of State for Carbogal and Plexiglas," Fiz. Goreniya Vzryva 40 (3), 104–116 (2004) [Combust., Expl., Shock Waves 40 (3), 344–355 (2004); https://doi.org/10.1023/B:CESW.0000028948.79289.ff].

    Article  Google Scholar 

  10. W. G. Proud, N. K. Bourne, and J. E. Field, “Shock-Induced Luminescence in Polymethylmethacrylate," AIP Conf. Proc. 429 (1), 801–804 (1998); DOI: 10.1063/1.55595.

  11. S. A. Bordzilovskii, S. M. Karakhanov, L. A. Merzhievskii, and M. S. Voronin, “Temperature Measurements for Shocked Polymethylmethacrylate, Epoxy Resin, and Polytetrafluoroethylene and Their Equations of State," J. Appl. Phys. 120 (13), 135903 (2016); DOI: 10.1063/1.4964303.

    Article  ADS  Google Scholar 

  12. D. P. Dandekar, P. J. Gaeta, and Y. Horie, “Double Shock and Release Experiments in PMMA and Z-Cut Sapphire," in Shock Waves in Condensed Matter–1987, Ed. by S. C. Schmidt and N. C. Holms (North Holland Press, New York, 1988), pp. 281–284.

  13. J. J. Dick, “Stress–Strain Histories in Shocked Polymethyl Methacrylate," in Shock Waves in Condensed Matter–1987, Ed. by S. C. Schmidt and N. C. Holms (North Holland Press, New York, 1988), pp. 301–304.

  14. A. V. Bushman, M. V. Zhernokletov, I. V. Lomonosov, Yu. N. Sutulov, V. E. Fortov, and K. V. Khishchenko, “Plexiglas and Teflon in Reshock Compression and Isentropic Unloading Waves: The Equation of State of Polymers at High Energy Density," Dokl. Akad. Nauk 329 (5), 581–588 (1993).

    Google Scholar 

  15. I. M. Voskoboinikov, V. M. Bogomolov, A. N. Afanasenkov, and V. N. Shevelev, “Determination of Temperatures of Organic Materials in Shock Waves," Dokl. Akad. Nauk 182 (4), 807–810 (1968).

    Google Scholar 

  16. I. M. Voskoboinikov and M. F. Gogulya, “Description of the State of Material behind a Shock Front," Fiz. Goreniya Vzryva 14 (3), 105–110 [Combust., Expl., Shock Waves 14 (3), 356–361 (1978); https://doi.org/10.1007/BF00740504].

    Article  Google Scholar 

  17. W. D. Reinhart and L. C. Chhabildas, “Response to Unloading and Reloading of Shock Compressed Polymethyl Methacrylate," AIP Conf. Proc. 845 (1), 131–134 (2006); DOI: 10.1063/1.2263282.

  18. K. V. Khishchenko, P. R. Levashov, M. E. Povarnitsyn, and A. S. Zakharenkov, “1D Gas-Dynamic Simulation of Shock-Wave Processes via Internet," AIP Conf. Proc. 1195, 69–72 (2009); http:// www.ihed.ras.ru/rusbank/gassim.

  19. S. A. Bordzilovskii and S. M. Karakhanov, “Temperature Measurement of Polymethylmethacrylate under Shock Compression," Vestn. Novosib. Gos. Univ., Ser. Fiz., No. 1, 116–122 (2011).

  20. I. Sh. Model’, “Measurement of High Temperatures in Strong Shock Waves in Gases," Zh. Eksp. Teor. Fiz. 32, 714–726 (1957).

    Google Scholar 

  21. M. B. Boslough, “A Model for Time Dependence in Shock-Induced Thermal Radiation of Light," J. Appl. Phys. 58 (9), 3394–3399 (1985); DOI: 10.1063/1.335756.

    Article  ADS  Google Scholar 

  22. S. A. Bordzilovskii, S. M. Karakhanov, and K. V. Khishchenko, “Brightness Temperature of Water Compressed by a Double Shock to Pressures of 60–79 GPa," Shock Waves 30, 505–511 (2020); DOI: 10.1007/s00193-020-00950-3.

    Article  ADS  Google Scholar 

  23. Encyclopedia of Polymers (Sov. Entsiklopedia, 1974), Vol. 2 [in Russian].

  24. W. J. Carter and S. P. Marsh, “Hugoniot Equation of State pf Polymers," Report No. LA-2 3006-MS UC-910 (Los Alamos Nat. Lab., July 1995).

  25. I. V. Kuz’mitskii, “Phase Transition at the Shock Front. Part 1. Theory and Application to PMMA," in Proc. IX Khariton Scientific Readings, 2007, pp. 258–267.

  26. I. V. Kuz’mitskii, “Phase Transition at The Shock Front. Part 2—Results of Calculations for PMMA,"in Proc. IX Khariton Scientific Readings, 2007, pp. 267–276.

  27. X. J. Peng, F. S. Liu, S. L. Zhang, et al., “The C(v) for Calculating the Shock Temperatures of Water Below 80 GPa," Sci. China: Phys., Mech. Astron. 54 (8), 1443–1446 (2011); 10.1007/s11433-011-4396-8.

    Article  ADS  Google Scholar 

  28. G. A. Lyzenga, T. J. Ahrens, W. J. Nellis, and A. C. Mitchell, “The Temperature of Shock-Compressed Water," J. Chem. Phys. 76 (12), 6282–6286 (1982); DOI: 10.1063/1.443031.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Karakhanov.

Additional information

Translated from Fizika Goreniya i Vzryva, 2021, Vol. 57, No. 6, pp. 112-121.https://doi.org/10.15372/FGV20210613.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordzilovskii, S.A., Voronin, M.S. & Karakhanov, S.M. Temperature of Polymethyl Methacrylate in a Secondary Shock Wave. Combust Explos Shock Waves 57, 736–745 (2021). https://doi.org/10.1134/S0010508221060137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508221060137

Keywords

Navigation