Skip to main content
Log in

Modeling of Ignition and Combustion of Boron-Containing Solid Propellants

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper presents the results of an experimental study of the ignition and slagging characteristics for combustion of boron-containing solid propellants with ammonium perchlorate as an oxidizer under conditions modeling the operation of the gas generator and afterburner of a rocket-ramjet engine. It is shown that the introduction of fluorine-containing additives into the propellant reduces the content and adhesion capacity of primary condensed combustion products (slags). The dependences of the ignition delay on the radiant heat flux density in the range 20–180 W/cm2 are obtained for model solid propellants containing boron, carbon, boron carbide, and slag particles collected in the gas generator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. V. N. Aleksandrov, V. M. Bytskevich, V. K. Verkholomov, M. D. Gramenitskii, N. P. Dulepov, V. A. Skibin, E. V. Surikov, V. Ya. Khil’kevich, and L. S. Yanovskii, Integrated Solid-Propellant Ramjets (Fundamentals of Theory and Calculation), Ed. by L. S. Yanovskii (Akademkniga, Moscow, 2006) [in Russian].

  2. V. A. Sorokin, L. S. Yanovskii, V. A. Kozlov, et al.,Ramjets on Solid and Pasty Fuels. Fundamentals of Design and Experimental Testing (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  3. D. A. Yagodnikov, Ignition and Combustion of Powdered Metals (Bauman Moscow State University, Moscow, 2009) [in Russian].

  4. M. Mitsuno, T. Kuwahara, K. Kosaka, and N. Kubota, “Combustion of Metallized Propellants for Ducted Rockets," in 23rd Joint Propul. Conf., June 29 to July 2, 1987, AIAA/SAE/ASME/ASEE(San Diego, California, 1987; doi.org/10.2514/6.1987-1724).

  5. B. K. Athawale, S. N. Asthana, and H. Singh, “Metallised Fuel-Rich Propellants for Solid Rocket Ramjet: A Review," Defence Sci. J.44 (4), 269–278 (1994); DOI: 10.14429/DSJ.44.4182.

    Article  Google Scholar 

  6. B. Kalpakli, E. B. Acar, and A. Ulas, “Improved Combustion Model of Boron Particles for Ducted Rocket Combustion Chambers," Combust. Flame 179, 267–279 (2017).

    Article  Google Scholar 

  7. Ya. S. Yanovskii, D. B. Lempert, V. V. Raznoschikov, I. S. Aver’kov, and M. S. Sharov, “Evaluation of the Performance of Some Metals and Nonmetals in Solid Propellants for Rocket Ramjet Engines," Fiz. Goreniya Vzryva Waves 56 (1), 81–94 (2020) [Combust., Expl., Shock 56 (1) 71–82 (2020); doi.org/10.1134/S0010508220010098].

  8. W. Q. Pang, L. T. De Luca, X. Z. Fan, O. G. Glotov, and F. Q. Zhao,Boron-Based Fuel-Rich Propellant Properties Combustion and Technology Aspects (CRC Press Taylor&Francis Group, London–New York, 2019).

    Book  Google Scholar 

  9. J. Liu, D. Liang, J. Xiao, B. Chen, Ya. Zhang, J. Zhou, and K. Cen, “Composition and Characteristics of Primary Combustion Products of Boron-Based Propellants," Fiz. Goreniya Vzryva 53(1), 64–74 (2017); [Combust., Expl., Shock Waves 53 (1), 55–64 (2017); doi.org/10.1134/S0010508217010099].

  10. A. N. Pivkina, D. B. Meerov, K. A. Monogarov, Yu. V. Frolov, and N. V. Murav’ev, “Prospects of Using Boron Powders As Fuel. II. Influence of Aluminum and Magnesium Additives and their Compounds on the Thermal behavior of Boron Oxide," Fiz. Goreniya Vzryva56 (2), 28–36 (2020); [Combust., Expl., Shock Waves56 (2) 148–155 (2020); doi.org/10.1134/S0010508220020057].

  11. D. A. Yagodnikov, A. V. Voronetskii, V. M. Mal’tsev, and V. A. Seleznev, “Enhancing the Propagation Velocity of a Flame Front in an Aluminum Aerosuspension," Fiz. Goreniya Vzryva 28(2), 51–54 (1992) [Combust., Expl., Shock Waves 28 (2), 155–158 (1992); doi.org/10.1007/BF00754851].

  12. O. G. Glotov, D. A. Yagodnikov, V. S. Vorob’ev, et al., “Ignition, Combustion and Agglomeration of Encapsulated Aluminum Particles in a Composite Solid Propellant. II. Experimental Studies of Agglomeration," Fiz. Goreniya Vzryva 43 (3), 83–97 (2007) [Combust., Expl., Shock Waves 43 (3), 320–333 (2007); doi.org/10.1007/s10573-007-0045-y].

  13. A. N. Bobrov, D. A. Yagodnikov, and I. V. Popov, “Ignition and Combustion in a Two-Component Powder Suspension in a Gas," Fiz. Goreniya Vzryva 28 (5), 3–7 (1992) [Combust., Expl., Shock Waves 28 (5), 453–457 (1992); doi.org/10.1007/BF00755713].

  14. Physicochemical Properties of Oxides: Handbook, Ed. by G. V. Samsonov (Metallurgiya, Moscow, 1969) [in Russian].

  15. Chemist’s Handbook. Basic Properties of Inorganic and Organic Compounds, Ed. by B. P. Nikol’skii (Khimiya, Leningrad, 1971), Vol. 2 [in Russian].

  16. V. A. Arkhipov, S. S. Bondarchuk, A. G. Korotkikh, V. T. Kuznetsov, A. A. Gromov, S. A. Volkov, and L. N. Revyagin, “Influence of Aluminum Particle Size on Ignition and Unsteady Combustion of Heterogeneous Condensed Systems," Fiz. Goreniya Vzryva 48 (5), 148–159 (2012) [Combust., Expl., Shock Waves 48 (5), 625–635 (2012); doi.org/10.1134/S0010508212050140].

  17. V. P. Sinditskii, A. N. Chernyi, S. Kh. Zhuo, and R. S. Bobylev, “Combustion of Mixtures of Ammonium Perchlorate with High-Calorific Combustibles," Usp. Khim. Khim. Tekhnol. 30 (8), 18–20 (2016).

    Google Scholar 

  18. V. P. Marusin, V. T. Kuznetsov, and A. I. Skorik, “Peculiarities of Stable Ignition of Ammonium Perchlorate + Urotropin Mixtures by Heat Impulses," Fiz. Goreniya Vzryva 26 (2), 37–40 (1990); [Combust., Expl., Shock Waves 26 (2), 160–162 (1990); doi.org/10.1007/BF00742402].

  19. Yu. V. Frolov, N. V. Obe’zyaev, V. N. Emel’yanov, and A. A. Borisov, “Combustion of Boron Particles," Preprint (Inst. of Chem. Phys., USSR Acad. of Sci., Chernogolovka, 1977).

  20. G. S. Pearson and D. Sutton, “Composite Solid Propellant Ignition—Ignition of Ammonia and Other Fuels of Perchloric Acid," AIAA J. 5 (2), 193–200 (1967).

    Article  Google Scholar 

  21. D. Liang, J. Liu, H. Li, et al., “Improving Effect of Boron Carbide on the Combustion and Thermal Oxidation Characteristics of Amorphous Boron," J. Therm. Anal. Calorim. 128, 1771–1782 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Arkhipov.

Additional information

Translated from Fizika Goreniya i Vzryva, 2021, Vol. 57, No. 3, pp.  58–64.https://doi.org/10.15372/FGV20210305.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhipov, V.A., Basalaev, S.A., Kuznetsov, V.T. et al. Modeling of Ignition and Combustion of Boron-Containing Solid Propellants. Combust Explos Shock Waves 57, 308–313 (2021). https://doi.org/10.1134/S0010508221030059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508221030059

Keywords

Navigation