Skip to main content
Log in

Theoretical Design and Screening Potential High Energy Density Materials: Combination of 1,2,4-oxadiazole and 1,3,4-oxadiazole Rings

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Searching for energetic materials with balanced detonation performance and sensitivity is a long-standing goal in the development of high energy density materials (HEDMs). In this work, density functional theory calculations are carried out to characterize the structure-property relationships of four linked 1,2,4-oxadiazole/1,2,4-oxadiazole and 1,2,4-oxadiazole/1,3,4-oxadiazole derivatives. Our results show that all these designed compounds possess good oxygen balance, positive heats of formation, high crystal densities, remarkable detonation performance, and acceptable impact sensitivity. Particularly, the first of these compounds has the best balanced detonation performance and sensitivity, with excellent detonation performance superior to that of 1,3,5-trinitro-1,3,5-triazinane (RDX) and lower impact sensitivity than that of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX). Given these exceptional properties, it is expected that all these designed compounds are potential HEDM candidates with low sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Lin, J. F. Chen, S. G. Zhu, et al., “Synthesis, Characterization, Detonation Performance, and DFT Calculation of HMX/PNO Cocrystal Explosive,” J. Energ. Mater. 35(1), 95–108 (2017).

    Article  ADS  Google Scholar 

  2. P. Ma, Y. T. Jin, P. H. Wu, et al., “Synthesis, Molecular Dynamic Simulation, and Density Functional Theory Insight into the Cocrystal Explosive of 2,4,6-Trinitrotoluene/1,3,5-trinitrobenzene,” Fiz. Goreniya Vzryva 53(5), 115–124 (2017) [Combust., Expl., Shock Waves 53(5), 596–604 (2017)].

    Google Scholar 

  3. Q. Sun, C. Shen, X. Li, et al., “Combination of Four Oxadiazole Rings for the Generation of Energetic Materials with High Detonation Performance, Low Sensitivity and Excellent Thermal Stability,” J. Mater. Chem. A, No. 5, 11063–11070 (2017).

    Article  Google Scholar 

  4. Y. Pan, W. H. Zhu, and H. M. Xiao, “Theoretical Studies of a Serials of Azaoxaisowurtztitane Cage Compounds with High Explosive Performance and Low Sensitivity,” Comput. Theor. Chem. 1114(15), 77–86 (2017).

    Article  Google Scholar 

  5. H. Lin, D. D. Yang, N. Lou, et al., “Computational Design of High Energy Density Materials with Zero Oxygen Balance: A Combination of Furazan and Piperazine Rings,” Comput. Theor. Chem. 1139(1), 44–49 (2018).

    Article  Google Scholar 

  6. H. Lin, J. F. Chen, Y. M. Cui, et al., “A DFT-D Study on Structural, Electronic, Thermodynamic, and Mechanical Properties of HMX/MPNO Cocrystal under High Pressure,” J. Energ. Mater. 35(2), 157–171 (2017).

    Article  ADS  Google Scholar 

  7. J. Tamuliene, J. Sarlauskas, and S. Bekesiene, “Modeling and Investigation of New Explosive Materials Based on N-(3,5-dimethyl-2,4,6-trinitrophenyl)-1H-1,2,4-triazol-3-amine,” J. Mol. Model. 23, 228 (2017).

    Article  Google Scholar 

  8. R. A. Olofson and J. S. Michelman, “Furazan,” J. Org. Chem. 30, 1854–1859 (1965).

    Article  Google Scholar 

  9. Z. D. Fu, R. Su, Y. Wang, et al., “Synthesis and Characterization of Energetic 3-nitro-1,2,4-oxadiazoles,” Chem. Eur. J. 18, 1886–1889 (2012).

    Article  Google Scholar 

  10. Y. X. Tang, C. L. He, and L. A. Mitchell, “Energetic Compounds Consisting of 1,2,5- and 1,3,4-oxadiazole Ring,” J. Mater. Chem. 3, 23143–23148 (2015).

    Article  Google Scholar 

  11. H. Wei, C. L. He, J. H. Zhang, et al., “Combination of 1,2,4-oxadiazole and 1,2,5-oxadiazole Moieties for the Generation of High-Performance Energetic Materials,” Angew. Chem. Int. Ed. 127, 9499–9503 (2015).

    Article  Google Scholar 

  12. T. S. Hermann, K. Karaghiosoff, T. M. Klapötke, et al., “Synthesis and Characterization of 2,2′-dinitramino-5,5′-bi(1-oxa-3,4-diazole) and Derivatives as Economic and Highly Dense Energetic Materials,” Chem. Eur. J. 23, 12087–12091 (2017).

    Article  Google Scholar 

  13. C. Yan, K. C. Wang, T. L. Liu, et al., “Exploiting the Energetic Potential of 1,2,4-oxadiazole Derivatives: Combining the Benefits of 1,2,4-oxadiazole Framework with Various Energetic Functionalities,” Dalton Trans. 46, 14210–14218 (2017).

    Article  Google Scholar 

  14. M. J. Frisch, G. W. Trcuks, H. B. Schlegel, et al., GAUSSIAN 9 (Revision A.01) (Gaussian, Wallingford, 2009).

    Google Scholar 

  15. P. Politzer et al., “An Electrostatic Interaction Correction for Improved Crystal Density Prediction,” Mol. Phys. 107(19), 2095–2101 (2009).

    Article  ADS  Google Scholar 

  16. M. J. Kamlet and S. J. Jacobs, “Chemistry of Detonation. I. A Simple Method for Calculation Detonation Properties of C-H-N-O Explosives,” J. Chem. Phys. 48, 23–35 (1968).

    Article  ADS  Google Scholar 

  17. M. Pospíšil, P. Vávra, M. C. Concha, et al., “A Possible Crystal Volume Factor in the Impact Sensitivities of Some Energetic Compounds,” J. Mol. Model. 16(5), 895–901 (2010).

    Article  Google Scholar 

  18. B. M. Rice and J. J. Hare, “A Quantum Mechanical Investigation of the Relation between Impact Sensitivity and the Charge Distribution in Energetic Molecules,” J. Phys. Chem. A 106(9), 1770–1783 (2002).

    Article  Google Scholar 

  19. B. Kosar and C. Albayrak, “Spectroscopic Investigations and Quantum Chemical Computational Study of (E)-4-methoxy-2-[(p-tolylimino)methyl]phenol,” Spectrochim. Acta, Part A 78(1), 160–167 (2011).

    Article  ADS  Google Scholar 

  20. J. S. Murray and P. Politzer, “The Electrostatic Potential: An Overview,” Comp. Mol. Sci. 1(2), 153–163 (2011).

    Article  Google Scholar 

  21. P. Politzer and J. S. Politzer, “Some Perspectives on Estimating Detonation Properties of C, H, N, O Compounds.” Cent. Eur. J. Energy Mater. 8(3), 209–220 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Lin.

Additional information

Original Russian Text © He Lin, D.-D. Yang, N. Lou, Sh.-G. Zhu, H.-Zh. Li.

Published in Fizika Goreniya i Vzryva, Vol. 55, No. 5, pp. 39–46, September–October, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Yang, DD., Lou, N. et al. Theoretical Design and Screening Potential High Energy Density Materials: Combination of 1,2,4-oxadiazole and 1,3,4-oxadiazole Rings. Combust Explos Shock Waves 55, 547–554 (2019). https://doi.org/10.1134/S0010508219050046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508219050046

Keywords

Navigation