Skip to main content
Log in

Evolution of electrical conductivity of emulsion explosives during their detonation conversion

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Electrical conductivity of explosion products behind the detonation front of emulsion explosives is measured. The composition of the emulsion matrix and the amount of the additive consisting of sensitizing glass microspheres are varied. The peak value of electrical conductivity for the examined compositions is 0.5–0.05 Ω-1 · cm-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Bordzilovskii, S. M. Karakhanov, and V. V. Sil’vestrov, “Optical Radiation from Shock-Compressed Epoxy with Glass Microspheres,” Fiz. Goreniya Vzryva 50 (3), 105–112 (2014) [Comb., Expl., Shock Waves 50 (3), 339–345 (2014)].

    Google Scholar 

  2. V. V. Sil’vestrov, S. A. Bordzilovskii, and S. M. Karakhanov, “Temperature of the Detonation Front of an Emulsion Explosive,” Fiz. Goreniya Vzryva 51 (1), 135–142 (2015) [Combust., Expl., Shock Waves 51 (1), 116–123 (2015)].

    Google Scholar 

  3. L. V. Dubnov N. S. Bakharevich, and A. I. Romanov, Industrial High Explosives (Nedra, Moscow, 2009) [in Russian].

    Google Scholar 

  4. V. A. Sosnin and E. V. Kolganov, Industrial Emulsion Explosives (GosNII Kristal, Dzerzhinks, 2009, Vol. 1) [in Russian].

  5. J. Lee and P. A. Persson, “Detonation Behavior of Emulsion Explosives,” Propel., Explos., Pyrotech., No. 15, 208–216 (1990).

    Article  Google Scholar 

  6. V. V. Sil’vestrov and A. V. Plastinin, “Investigation of Low Detonation Velocity Emulsion Explosives,” Fiz. Goreniya Vzryva 45 (5), 124–133 (2009) [Comb., Expl., Shock Waves 45 (5), 618–626 (2009)].

    Google Scholar 

  7. V. A. Sosnin and E. V. Kolganov, “Study of the Detonation Process in Industrial Emulsion Explosives,” Khim. Fiz. 22 (8), 100–107 (2003).

    Google Scholar 

  8. G. A. Leiper, I. J. Kirby, and A. Hackett, “Determination of Reaction Rates in Intermolecular Explosives Using the Electromagnetic Particle Velocity Gauge,” in Proc. Eight Symp. on Detonation (1985), pp. 187–195.

    Google Scholar 

  9. A. S. Yunoshev, A. V. Plastinin, and V. V. Sil’vestrov, “Effect of the Density of an Emulsion Explosive on the Reaction Zone Width,” Fiz. Goreniya Vzryva 48 (3), 79–88 (2012) [Combust., Expl., Shock Waves 48 (3), 319–327 (2012)].

    Google Scholar 

  10. V. V. Sil’vestrov, S. M. Karakhanov, A. V. Plastinin, and A. A. Deribas, “Effect of the Emulsion Explosive Density on the Reaction Zone Width,” in Proc. VII Khariton’s Topical Sci. Readings (Inst. Exp. Phys., Russian Federal Nuclear Center, Sarov, 2005), pp. 132–137.

    Google Scholar 

  11. S. A. Kolesnikov, V. V. Lavrov, V. M. Molchanova, et al., “Experimental Study of the Structure of Detonation Waves in Emulsion Explosives,” in Lavrent’ev’s Readings on Mathematics, Mechanics, and Physics, Proc. Int. Conf. (Lavrent’ev Inst. Hydrodynamics, Novosibirsk, 2010), pp. 216–217.

    Google Scholar 

  12. A. P. Ershov, N. P. Satonkina, and G. M. Ivanov, “Reaction Zones and Conductive Zones in Dense Explosives,” in Proc. of 13th Int. Detonation Symp., Norfolk, VA, 2006, ONR 351-07-01, pp. 79–88.

    Google Scholar 

  13. A. P. Ershov, N. P. Satonkina, and G. M. Ivanov, “Profiles of Electrical Conductivity in Dense Explosives,” Khim. Fiz. 26 (12), 21–33 (2007).

    Google Scholar 

  14. V. M. Titov, E. R. Pruuel, K. A. Ten, et al., “Experience of Using Synchrotron Radiation for Studying Detonation Processes,” Fiz. Goreniya Vzryva 47 (6), 3–15 (2011) [Combust., Expl., Shock Waves 47 (6), 615–626 (2011)].

    Google Scholar 

  15. S. I. Rafeichik, “Investigation of the Critical Diameter of Emulsion Explosives as a Function of Density in a Steel Shell,” Vest. NGU, Ser. Fiz. 8 (6), 107–110 (2013).

    Google Scholar 

  16. A. C. Mitchell and W. J. Nellis, “Equation of State and Electrical Conductivity ofWater and Ammonia Shocked to the 100 GPa (1 Mbar) Pressure Range,” J. Chem. Phys. 76 (12), 6273–6281 (1982).

    Article  ADS  Google Scholar 

  17. A. V. Orlov, “Effect of Temperature on Inelastic Deformation of LK-105 Glass in Shock Waves,” Candidate’s Dissertation in Physics and Mathematics (Moscow Inst. of Physics and Technology, Moscow, 1992).

    Google Scholar 

  18. N. P. Satonkina, E. R. Pruuel, A. P. Ershov, et al., “Electrical Conduction of Emulsion Explosives,” J. Eng. Thermophys. 20 (3), 315–319 (2011).

    Article  Google Scholar 

  19. M. Yoshida, M. Iida, K. Tanaka, and S. Fudjiwara, “Detonation Behavior of Emulsion Explosives Containing Glass Microballoons,” in Proc. 8th Symp. (Int.) on Detonation (1985), pp. 993–1000.

    Google Scholar 

  20. V. V. Yakushev and A. N. Dremin, “Nature of Electrical Conductivity of Detonation Products of Condensed Explosives,” Dokl. Akad. Nauk SSSR 221 (5), 1143–1144 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Satonkina.

Additional information

Original Russian Text ©N.P. Satonkina, E.R. Pruuel, A.P. Ershov, V.V. Sil’vestrov, D.I. Karpov, A.V. Plastinin.

Published in Fizika Goreniya i Vzryva, Vol. 51, No. 3, pp. 91–97, May–June, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satonkina, N.P., Pruuel, E.R., Ershov, A.P. et al. Evolution of electrical conductivity of emulsion explosives during their detonation conversion. Combust Explos Shock Waves 51, 366–372 (2015). https://doi.org/10.1134/S0010508215030132

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508215030132

Keywords

Navigation